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CHAPTER I. INTRODUCTION 

Laminar Flow Heat Transfer in Tubes 

Laminar flow heat transfer in tubes is encountered in a wide variety 

of engineering situations. The following examples can be cited: heating 

or cooling of viscous liquids in the chemical and food industries, heating 

of oils so that they can be transported, cooling of space suits, heating 

of the circulating fluid in solar collectors, heat transfer in compact ex­

changers, and cooling or warming of blood during surgical operations. One 

potential application of great magnitude involves the heating of oil from 

the Arctic oil fields so that it can be transported south. It is estimated 

that more than $100 million annually is involved in heat exchangers asso­

ciated with laminar flow. In addition, in cases where normal heat ex­

changer operation is in turbulent flow, off-design operation and operation 

during start-up or shut-down periods may result in laminar flow conditions. 

When laminar flow heat transfer occurs, it usually represents the dominant 

thermal resistance in a heat exchanger. 

In the discussion of the heat transfer activity in the present decade, 

Sabersky [l] emphasized that even though laminar flow heat exchangers have 

been and are now being used widely, there is a lack of precision in the 

prediction of the laminar flow heat transfer coefficients. It has been 

recognized that laminar flow heat transfer is dependent on many variables, 

including tube geometry, flow inlet velocity profile, fluid properties, 

tube orientation, tube wall properties, and heat flux boundary conditions. 

With the demands of modern technology, more accurate predictions of laminar 

heat transfer are required. In recent years, the solutions available for 
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laminar flow have been extended by sophisticated experiments and analysis. 

Today, by the application of modem computer technology, analysis has ex­

ceeded experimental verification to some degree. 

Literature Survey 

A tabular survey of the current and past literature relating to lam­

inar flow will be given here for the purpose of general orientation. The 

existing analytical solutions for the heat transfer and pressure drop pa­

rameters for laminar-flow systems can be classified according to axial 

thermal boundary condition, fluid property variation, tube geometry, orien­

tation, and tube thermal boundary conditions. Neglecting fluid property 

variation and orientation effects. Shah and London [2] reviewed the avail­

able analytical solutions up to December, 1970, for laminar flow. Only the 

forced convection, steady laminar flow of constant-property Newtonian 

fluids through stationary ducts was considered. However, in any convective 

heat transfer process within a gravitational force field, density differ­

ences arising from differences in temperature are responsible for natural 

convection effects, and, in most practical situations, both forced and free 

convection modes are present. For completeness, then, the present survey 

includes variable properties and tube orientation. 

Emphasis is given to the analytical solutions for laminar flow heat 

transfer in straight and stationary tubes. The primary literature up to 

May, 1974, is presented in Table 1,1. Letters and numbers are used to 

represent different conditions, as follows; 

G, Geometry 

1. Circular Tubes 
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2. Rectangular Channels, etc. 

0. Orientation 

1. Horizontal 

2. Inclined 

3. Vertical 

B. Thermal Boundary Condition 

1. Constant heat flux axially, but uniform wall temperature 

around circumference 

2. Constant heat flux axially and circumferentially 

3. Constant wall temperature 

A. Axial Thermal Condition 

1. Developing 

2. Fully developed 

P. Fluid Property Variation 

1. Constant property 

2. Variable density 

3. Variable viscosity 

4. Non-Newtonian behavior 

Gl, 01, B1 and B2, A1 , and PI for example, represents the analytical solu­

tion for the entrance region, assuming constant fluid properties, in a 

horizontal circular tube with the uniform heat flux boundary condition. 

As indicated in Table 1.1, many important problems have not been con­

sidered. Since it is still not possible to solve a general formulation of 

the problem, future analytical studies will continue to fill in the gaps in 

this table. Two such problems of practical interest which are analytically 

tractable consider the effects of free convection on entrance region heat 
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Table 1,1. Laminar flow heat transfer in tubes 

Investigators (Year) [Reference] Considerations Method 

Constant Property. Fully Developed 

Marco and Han (1955) [3] 

Sparrow and Siegel (1959) 

Reynolds (1960) 

Cheng (1966) 

Paris and Viskanta (1969) 

Constant Property Entrance Region 

[4] 

[5] 

[ 6 ]  

[7] 

Graetz (1883) [8] 

Clark and Kays (1953) [9] 

Kays (1955) [10] 

Sellers, Tribus, (1956) [il] 
and Klein 

G1 and G2, 01, Bl, A2, PI 

Gl, 01, Bl, A2, PI 

Gl, 01, Bl, A2, PI 

G2, 01, Bl, A2, PI 

Gl, 01, B2, A2, PI 

Gl, 01, Bl and B3, Al, PI 

G2, 01, Bl and B3, Al, PI 

Gl, 01, Bl, Al, PI 

Gl and G2, 01, Bl and B3, 
Al, PI 

Analogy with deflection of 
thin plates 

Variational method 

Series expansion 

Analogy with deflection of 
thin plates 

Perturbation 

Series expansion 

Numerical 

Numerical 

Eigen function 

Siegel, Sparrow, 
and Hallman 

(1958) [12] Gl, 01, Bl, Al, PI Series expansion 

Singh (1958) [13] Gl, 01, B3, Al, PI Eigen function 

Sparrow and Siegel (1960) [14] Gl and G2, 01, Bl, Al, PI Variational method 

Tien and Dawelek (1964) [15] Gl, 01, B3, Al, PI Series expansion 

Hwang and Fan (1964) [16] G2, 01, Bl and B3, Al, PI Numerical 

Ulrichson and (1965) [17] Gl, 01, B2 and B3, Al, PI Numerical 
Schmitz 
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Table 1.1 (Continued) 

Investigators (Year) [Reference] 

Hornbeck (1965) [18] 

Roy (1966) [19] 

McMordie and Emery (1966) [20] 

Montgomery and 
Wilbulswas 

(1966) [21] 

Butterworth and 
Hazell 

(1969) [22] 

Manohar (1969) [23] 

Hsu (1971) [24] 

Fully Developed with Density and/ 
Viscosity Variation 

'or 

Deissler (1951) [25] 

Morton (1959) [26] 

Kettleborough (1960) [27] 

Koppel and Smith (1962) [28] 

Bradley and 
Entwistle 

(1965) [29] 

Mori and Futagami (1967) [30] 

Siegwarth, Mikesell, 
Readal, and 
Hanratty 

(1969) [31] 

Cheng and Hwang (1969) [32] 

Considerations Method 

Gl, 01, B1 and B3, Al, PI Numerical 

Gl, 01, B1 , Al, PI Numerical 

Gl, 01, Bl, Al, Pi Numerical 

G2, 01, Bl and B3, Al, PI Numerical 

Gl, 01, Bl, Al, PI Series expansion 

Gl, 01, B2, B3, Al, PI Numerical 

Gl, 01, Bl, Al, PI Series expansion 

Gl, 01, Bl, A2, P3 Series expansion 

Gl, 01, Bl, A2, P2 Perturbation 

G2, 01, 32 and B3, A2, Numerical 
P2 and P3 

Gl, 01, B2, A2, P2 and P3 Series expansion 

Gl, 01, B3, A2, P2 and P3 Numerical 

Gl, 01, Bl, A2, P2 Boundary layer integration 

Gl, 01, Bl, A2, P2 Boundary layer integration 

G2, 01, Bl, A2, P2 Numerical 
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Table 1.1 (Continued) 

Investigators (Year) [Reference 

Newell and Bergles (1970) [33] 

Siegwarth and (1970) [34] 
Hanratty 

Hwang and Cheng (1970) [35] 

Martin and Fargie (1972) [36] 

Entrance Region With Density and/or 
Viscosity Variation 

Yang (1962) [37] 

Rosenberg and (1965) [38] 
Heliums 

Test (1968) [39] 

Hwang and Hong (1970) [40] 

Schade and McEligot (1971) [41] 

Swearingen and (1971) [42] 
McEligot 

Cheng, Hong, and (1972) [43] 
Hwang 

Non-Newtonian Fluid Flow 

Metzner and Gluck (1960) [44] 

Oliver and Jenson (1964) [45] 

Mikillop (1964) [46] 

Considerations Method 

Gl, 01, B1 and B2, A2, 

Gl, 01, Bl, A2, P2 

Gl, 01, Bl, A2, P2 

Gl, 01, Bl, A2, P3 

P2 Numerical 

Numerical 

Boundary vorticity 

Numerical 

Gl, 01, Bl and B3, Al, 

Gl, 01, B3, Al, P3 

Gl, 01, Bl, Al, P3 

G2, 01, Bl, Al, P3 

Gl, 01, B2 and B3, Al, 
and P3 

G2, 01, B2, Al, P2 and 

G2, 01, Bl, Al, P2 

P3 Series expansion 

Numerical 

Numerical 

Series expansion 

P2 Numerical 

P3 Numerical 

Numerical 

Gl, 01, B3, A2, P4 

Gl, 01, B3, Al, P3 and P4 

Gl, 01, B2 and B3, Al, P4 

Series expansion 

Series expansion 

Numerical 
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Table 1.1 (Continued) 

Investigators (Year) [Reference] Considerations Method 

DeYoung and Scheele s (1970) [47] Gl, 03, B2, 

CM <
 P2, , and P4 Series expansion 

Vertical Tubes and Channels 

Hallman (1956) [48] Gl, 03, Bl, A2, P2 Series expansion 

Lu " (1960) [49] Gl, 03, B2, A2, P2 Series expansion 

Tao (1960) [50] G2, 03, B2, A2, P2 Complex functions 

Rosen and Hanratty (1961) [51] Gl, 03, 33, Al, PI and P3 Series expansion 

Lawrence (1965) [52] Gl, 
and 

03, 
P3 

B2 , and B3, Al, P2 Numerical 

Marner (1968) [53] Gl, 03, B3, Al, P4 Numerical 

Allen and Finn (1970) [54] Gl, 03, B3, Al, P2 Numerical 

Zeldin and Schmidt (1971) [55] Gl, 03, B3, Al, P2 Numerical 

Iqbal, Aggarwala, 
and Khatry 

(1972) [56] G2, 03, Bl, A2, P2 Series expansion 

Inclined Tubes 

Iqbal and 
Stachiewicz 

(1966) [57] Gl, 02, Bl, A2, P2 Perturbation 

Iqbal and 
Stachiewicz 

(1967) [58] Gl, 02, Bl, A2, P2 Perturbation 

Hong (1971) [59] Gl, 02, Bl, A2, P2 Numerical 

Cheng and Hong (1972) [60] Gl, 02, Bl, A2, P2 Numerical 
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transfer in horizontal circular tubes (Gl, 01, B2, Al, P2) and the effects 

of the temperature dependency of both density and viscosity on heat trans­

fer in fully developed flows in circular tubes (Gl, 01, B1 and B2, A2, P2 

and P3). 

Several attempts have been made to determine the effect of free con­

vection on a fully developed laminar tube flow. In many cases, the en­

trance region is quite short; hence, the fully developed case is of prac­

tical interest. None of the analyses for fully developed laminar flows 

have considered temperature-dependent density and viscosity, yet most 

fluids used in laminar flow exhibit a pronounced variation of viscosity 

with temperature. Of the various analytical techniques used for studying 

fully developed combined forced and free convection (perturbation [26, 57, 

58], boundary vorticity [35, 59, 60], boundary layer [30, 31, 34], and 

finite difference [33]), the boundary layer technique appears to be the 

most promising for inclusion of viscosity effects. 

Laminar Flow Heat Transfer Augmentation in Tubes 

It has been realized that laminar flow heat transfer coefficients in 

ordinary tubes are generally low. In recent years, the requirement for 

more efficient heat transfer systems has stimulated interest in augmenta­

tive heat transfer methods. Use of artificially roughened surfaces, use 

of extended surfaces, use of inlet vortex generators, vibration of the sur­

face or fluid, application of electrostatic fields, and the insertion in 

tubes of objects such as twisted tapes, coiled wire, or spinners are a 

few examples of such augmentative techniques. Existing systems can often 

be improved by using an augmentative method, while in other applications. 
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such as the design of heat exchangers for use in space vehicles, an aug­

mentative scheme may be mandatory in order for the system to function prop­

erly and meet the size limitations imposed. The given augmentative meth­

ods are frequently accompanied with increases in cost, weight, pumping 

power, and extra parts. It is necessary for the designer to understand 

the mechanism involved in augmentation and to evaluate the performance of 

the method in terms of applicable design constraints. A detailed survey 

and evaluation of the many augmentative methods presently employed is given 

by Bergles [61, 62]. 

The present investigation is focused on laminar flow heat transfer 

augmentation in tubes. For this objective, the primary available litera­

ture is summarized in Table 1.2. 

Devices which establish a swirl in the fluid in order to increase the 

heat transfer coefficient are particularly attractive augmentative schemes 

for forced convection systems. However, there appears to be no data for 

swirl flow of liquids in laminar flow. Swirl flows generated by twisted 

tapes running the entire length of the heat transfer tube appear to offer 

significant benefits since improvements in heat transfer are obtainable at 

relatively low cost. Tape inserts can be easily employed to improve the 

performance of existing systems. Twisted tapes, of course, involve in­

creased pressure drop and thus pumping power. The benefits of twisted-tape 

inserts must be viewed in terms of the constraints of the particular appli­

cation; fixed flow rate, fixed pressure drop, fixed pumping power, etc. 
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Table 1.2. Laminar flow heat transfer augmentation in 

Techniques Investigators Test Arrangement 

1. Surface Cope (1941) [63] 

Roughness 

and 

Treatment 

Cooling of water in 

internally knurled tubes. 

Nunner (1956) 

[64] 

Koch (1958) [65] 

Blumenkrantz and 

Taborek fl971) 

[66] 

Two-dimensional attached 

roughness rings of rectan­

gular or round shape 

Inserted with various 

spacings in tubular test 

section. Heating of air. 

Circular disks or rings 
Inserted into tube with 
various spacings. 

Heating of air. 

Heating and cooling of 

Alta-Vls-530 in Turbotec 

deep spirally grooved 

tubes. 

Zappa and Gelger 

(1971) [67] 

Heating of transformer 

oil in horizontal annulus 
with inner tube having 

circumferential fins. 

Test Parameters Conclusions 

3 5 
Re = 10 - 10 Roughness increases h in 

transition and laminar 
region, but has little 
effect on h for turbulent 
flow. 

Re = 500 - 80,000 Up to 280 percent improve­

ment in laminar range with 

most effective roughness 

configuration. 

Re = 100 - 10 Optimum L/e ratio at about 

L/e; 4-196 10. Turbulent character­
istics at very low Re. 

15 - 200 percent improvement. 

ID = 0.93 in. h increased up to 450 percent 

Re = 3-4500 for heating and 120 percent 
for cooling. 

Ratio of spacing to h Increased up to 83 percent 

height of fin: 
3-40 

Re - 200 - 700 



www.manaraa.com

Table 1,2 (Continued) 

Techniques Investigators Test Arrangement 

2.  
Internal 

Extended 

Surface 

De Lorenzo and 

Anderson (1944) 
[68] 

Kun (1970) [69] 

Hu and Chang 
(1973) [70] 

Longitudinal fins, in 

annular gap of double pipe 

exchanger. Heating of 
SAE 40, 50 lube oil, and 
43° API kerosene. 

V fins In straight tubes. 
Analytical solution for 
UWT, assuming fully devel­

oped, constant property 

flow. 

Internally finned tubes. 

Analytical solution for 

UHF assuming fully devel­

oped, constant property 

flow. 

3. Swirl 
Flow 

Watkinson, 

Milettl and 

Kubanek (1974) 

[71] 

Koch (1958)[65] 

Siegel and 

Perlmutter 

[72] 
(1958) 

Heating of SAE 10w30 motor 

oil in Forge-Fin tubes. 

Heating of air in tubes 
with loose-fitting twisted 

tapes. 

Analytical entrance region 

solution with inlet swirl 

flow. UHF and constant 
fluid properties 

Test Parameters Conclusions 

Re = 20 - 10,000 Transition between laminar 

Numbers of fin = 24, and turbulent flow begins 
28, 36 at Re < 400. h with 24 

fins is higher than h with 
36 fins about 45 percent. 

Variable fin angle Nu varies between 1.7 

and length 4,6. 

Variable number and 22 fins extended to 80 

length of fins percent of radius is the 
optimum condition, 

NUp = 85.2. 

Re = 50 - 3,000 Up to 187 percent improve-

Fr = 180 - 450 ment in h based on constant 

pumping power comparison. 

y = 11, 4.3, 2.5 Up to 50 percent increase 

Re = 100 - 70,000 in h in laminar range 
with y = 2.5. 

Nu is higher with swirl 
flow case than without 
swirl in entrance 
region. 
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Table 1.2 (Continued) 

Techniques Investigators Test Arrangement 

Penney (1965) [73] 

Klya and 

Fukusako (1971) 

[74] 

Date and Slngham 
(1972) [75] 

4. 

Displaced Koch (1958)[65] 

Promoters 

Sununu (1971) [76] 

Genettl and 

Prlebe (1973) [77] 

5. Curved Truesdell and 

Tubes Adler (1970) [78] 

Twisted-tape is Installed 

loosely and secured at 

downstream end In a bearing 

("Spiral tor"). Heating 

of com syrup solution. 

Analytical region solution 

with Inlet swirl. UWT 

and constant fluid 

properties. 

Numerical solution of UHF 

with constant fluid 

properties. 

Disks, propellers, Raschlg 
rings, and balls as tube 
Inserts. Heating of air. 

Static Mixer loosely 

Inserted In tube. Heating 

of silicone oil, water, 
and lubricating oil. 

Static Mixer, steam heat­

ing, motor oil, lOW. 

Numerical solution for 

helically colled tubes. 

Test Parameters Conclusions 

Tape rotation 

up to 100 rpm 

Pr = 0.72 

K = fla/w - 0, 1.0, 

1.5 

Pr = I, 10, 100, 500 

Re » 300 - 2,000 

Re = 100 - 70,000 

Re = 0.05 - 500 

Pr « I - 10,000 

Re - 10 - 2,100 

h Increased up to 95 

percent with the rotating 

tape. 

Entrance swirl increases 

Nu about 15 percent 

Nu increases sharply as 
Pr and Re/y Increase. 

Nu up to 1250 for 
Pr = 500, Re/y = 600. 

Up to about 200 percent 

Increase with all Inserts 

in laminar region. 

Nu Increased with static 

mixer up to 70. 

Nu increases In both 

entrance and fully 

developed region. 

De = 1 - 295 Nu Increases as De 

Increases. 
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Table 1.2 (Continued) 

Techniques Investigators Test Arrangement Test Parameters Conclusions 

Dravid, Smith, 

Merrill and 

Brian (1971) [79] 

Akiyama and Cheng 

(1971) [80] 

Singh (1973) [81] 

Helically coiled tubes. 

Entrance region solu­

tion, assuming UWT and 

constant fluid properties. 

Numerical solution for 

curved pipe, assuming UHF 

and constant fluid 

properties. 

Helically coiled tubes, 

electrically heated. 

Water and Dowtherm G. 

Pr = 4 - 6 

De = 87 - 1950 

Nu = f (De, Pr) 

Re = 70 - 8,000 

De shortens entrance 

length. Increases Nu. 

Nu Increases with increas­

ing De and Pr. 

Improvement is higher for 

laminar flow than for 

turbulent flow. Nusselt 
number up to 100. 

6. Rotating Mori and 

Tubes Kakayama (1967) 
[82] 

Mori and 
Nakayama (1968) 
[83] 

Analytical solution for a 

straight pipe rotating 

around a parallel axis. 

Fully developed flow, UWT, 

and constant fluid 

properties assumed. 

Theoretical analysis of a 
straight pipe rotating 
around an axis perpen­
dicular to its own axis. 

Coriolls force Increases 
Nu. 

Nu increases as rotational 

speed increases. 

Miyazakl (1971) 
[84] 

Analytical solution for a 
rotating curved pipe. 
UHF, fully developed flow 

and constant fluid 

properties assumed. 

Gr, De, and Coriolls forces 
have significant effect on 
increasing Nu, but radius 
ratio has minor effect. 
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Table 1.2 (Continued) 

Techniques Investigators Test Arrangement 

7, 

Vibration Scanlan (1958) 

[85] 

Raben (1961) [86] 

Nevlll, Coiranerford 

and Raben (1963) 

[87] 

Forced convection in a 

rectangular channel with 

long, heated side vibrated 

transversely. Heating of 

water. 

Transverse vibration of a 
pipe with water flowing 

on the outside of the 

pipe In an annular space. 

Annulus with inner tube 

laterally oscillating. 

Heating of water. 

Ogle and Engel 

(1963) L88] 

8 .  
Electro­

static 

Fields 

Schmidt and 

Leidenfrost 

(1953) [89] 

Velkoff (1963) 
[90, 91] 

Annular test section with 

water flowing in inner 
tube. Transversely 

vibrated Inner tube. 

Flow of oil in annular 

test section with inner 

surface heated. Electric 

field applied to annular 

gap. 

Heating of air inside a 

.tube having a wire 
electrode suspended 
concentrically in tube. 

Test Parameters Conclusions 

a = 0,0005 - 0.002 Up to 180 percent increase 

in. in h below cavitation 

f = 20 - 75 Hz intensity. 
Re = 360 - 2,170 

Re^ = 541 16,000 

Re = 600 - 6,000 
V 

Up to 450 percent Improve­

ment In h in laminar 
range. 

a = 0.5 in. 

f = 20 - 100 Hz 

q = 4,500 - 13,000 

Btu/hr-ft^ 

Reduction in h. 

a = 0.042 - 0.208 

in. 
f = 4 - 450 Hz 

Re = 417 - 629 

Up to 70 percent increase 

in overall coefficient 

for laminar flow. 

Re = less than 3,000 Up to 400 percent 

E =0-32 kvdc improvement in h. 

E = 0 - 75 kvdc Up to 100 percent 

increase in h. 
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Table 1.2 (Continued) 

Techniques Investigators Test Arrangement Test Parameters Conclusions 

Levy (1963) [92] 

Moss and Grey 
(1966) [93] 

Heating of silicon oil in 
annular test section. 
Electric field applied to 
annular gap. 

Heating of nitrogen inside 

a tube having a wire 
electrode located 
concentrically in tube. 

ID = 0.5 in., 
OD = 0.79 in. 
E = 0 - 15 kvdc 

Re = 1,200 - 10,000 

Up to 140 percent 
Increase in h. 

Up to 95 percent improve­

ment in h for laminar flow 

negligible Improvement for 

turbulent flow. 
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Scope of Investigation 

The preceding discussion has indicated several unresolved areas in 

laminar flow heat transfer. In accordance with the practical need for new 

information in this area, an analytical and experimental program was under­

taken. The present report on this program is organized mainly into four 

chapters. Chapter II concerns free convection effects in the thermal en­

trance region for laminar flow in horizontal circular tubes. The litera­

ture review reveals that an analytical solution is not available for this 

problem. As indicated by the experimental work of Petukhov and Polyakov 

[94, 95] and Bergles and Simonds [96], the developing length for the 

combined forced and free convection flow can be much shorter than that 

required in the absence of free convection effects. The disagreement be­

tween these experimental investigations and the traditional analytical 

prediction of entrance length and heat transfer coefficient in the fully 

developed region encourages an analytical solution of the secondary motion 

effect in the entrance region. The objective in Chapter II is, therefore, 

to obtain a more realistic analytical solution which can be used for design 

purposes. 

Chapter III describes the temperature-dependent viscosity effect on 

combined forced and free laminar convection in horizontal tubes. Morcos 

and Bergles [97] recently reported that the available analytical solutions 

could not accurately predict the heat transfer results. The disagreement 

is especially noticeable for fluids with highly temperature-dependent vis­

cosities, such as ethylene glycol. The usual purely empirical correlations 

which employ bulk to wall viscosity ratios or evaluate the fluid properties 
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at the film temperature are not derivable from the governing differential 

equation or dimensional analysis. A new parameter which can be derived 

directly from the governing equation must be introduced. In order to com­

plete the study of fluid property variation, non-Newtonian fluid flow, 

together with variable density and constituency, in horizontal tubes is 

discussed briefly in Appendix E. 

Chapter IV describes a theoretical study which supports the experimen­

tal twisted tape studies presented in Chapter V. This analytical solution 

for constant-property flow in the entrance region of a semi-circular tube 

is a limiting solution for twisted tape flow which is used to verify that 

experimental data were obtained under fully developed conditions. 



www.manaraa.com

18 

CHAPTER II. ANALYTICAL SOLUTIONS FOR COMBINED FORCED AND FREE 

LAMINAR CONVECTION IN THE ENTRANCE REGION OF HORIZONTAL TUBES 

Introduction 

Heat transfer from a solid surface to a fluid is influenced by two 

modes of induced fluid motion when a pump is used to produce circulation. 

The primary mode is called forced convection. Motion due to density dif­

ferences occurring throughout a fluid under the influence of gravity is 

called free or natural convection. For laminar flow heat transfer in a 

horizontal tube, the body forces are characterized by the Grashof number 

and the forced flow by the Reynolds number. The tube diameter is conven­

tionally used as the characteristic dimension in both dimensionless param­

eters. The fluid properties associated with Prandtl number are usually 

coupled with Grashof number and Reynolds number as Rayleigh number and 

Peclet number, respectively. In most physical situationŝ  both forced and 

free convection modes are present, and the relative magnitude of the forces 

associated with these modes determines whether the flow can be classified 

as pure forced, combined forced and free, or free convection. 

Three boundary conditions are generally considered for analytical 

solutions of laminar heat transfer in circular tubes: uniform wall tem­

perature (UWT), uniform heat flux (UHF), and uniform temperature difference. 

For pure forced convection, the thermally fully developed analyses for 

these boundary conditions are well known. The heat transfer analysis in 

the developing thermal region is given for uniform wall temperature (classi­

cal Graetz problem) in Refs. 8, 10, 11, 18, and 21, for uniform heat flux 

in Refs. 10, 11, 12, 18, 19, and 21, and for constant temperature 
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difference in Réf. 10 (refer to Table 1.I). 

In the real physical situation, however, when a flowing fluid is 

heated in a horizontal tube, the fluid near the wall is warmer, and there­

fore lighter, than the fluid farther removed from the wall. This lighter 

fluid thus flows upward along the wall and continuity requires a downflow 

of the heavier fluid near the center of the tube. As a result, there is a 

secondary fluid motion established which is symmetrical about a vertical 

plane passing through the axis of the tube; combined with the axial flow, 

the three-dimensional streamlines exhibit a spiraling character. 

In situations where natural convection effects are not negligible, 

the tube orientation becomes important, with the two major alignments 

being vertical and horizontal. In vertical tubes, the velocity caused by 

buoyant forces is in parallel to the direction of the main flow. It is 

relatively straightforward to solve the momentum and energy equations 

analytically including free convection because rotational symmetry is re­

tained. Detailed results for upward and downward fully developed flow in 

vertical tubes are given by Hallman [48]. In the case.of horizontal tubes, 

however, the buoyant and inertia1 forces are perpendicular to each other, 

which results in loss of rotational symmetry and a more difficult analysis. 

In some operating conditions, the tube may be inclined. When this occurs, 

the tube inclination angle is seen to be an important parameter. As indi­

cated recently by Cheng and Hong [60] the Nusselt number increases consid­

erably with increasing tube inclination angle from zero to 10 degrees for 

high Rayleigh number flow due to strong secondary flow. For tube inclina­

tions larger than 10 degrees, the Nusselt number increases slightly and 

reaches a maximum at 90 degrees of tube inclination. A maximum Nusselt 
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number does not exist for some intermediate tube inclinations, which is 

contrary to the results obtained by Iqbal and Stachiewicz [57] using a 

perturbation method. 

Morton [26], del Casal and Gill [98] and Iqbal and Stachiewicz [57] 

considered series solutions of fully developed combined forced and free 

convection in horizontal tubes using various quantities for a perturbation 

parameter. Applying Boussinesq's approximation [99], all of these inves­

tigators assumed constant properties except for density variation with 

temperature in the buoyancy term. These results, which include both first-

order and second-order perturbation analyses, are,however, contrary to 

experimental results for even moderate values of the expansion parameters. 

Mori and Futagami [30] utilized an integral approach which was in fair 

agreement with limited experimental results for air. An early boundary 

layer solution by Mikesell [10Ô] was unsuccessful; however, a later boundary 

layer analysis by Siegwarth and co-workers [3l] agreed well with data for 

ethlene glycol at larger Rayleigh numbers. With this method the flow is 

divided into two regions: a boundary layer region close to the wall and 

a core region. Since intense circulation is required for this model, the 

boundary layer solution is only good for larger Rayleigh numbers. 

In order to accurately solve the horizontal tube problem, Newell and 

Bergles [33] employed finite-difference techniques and a large-scale digital 

computer to obtain the fully developed laminar flow solution (UHF) for two 

limiting boundary conditions: zero circumferential heat conduction in the 

tube wall ("Glass tube" or "ZC") and uniform temperature around the tube 

circumference ("Infinite conductivity tube" or "IC"). The finite-differ-

ence approach appears to be the only method which will yield accurate 
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predictions over a wide range of conditions. Siegwarth and Hanratty [34] 

applied a finite-difference solution and obtained detailed flow and tem­

perature profiles for several cases with ethylene glycol. Cheng and Hwang 

[321 recently developed a more economical boundary vorticity method to ob­

tain solutions for horizontal and inclined tubes. This method is re­

stricted to lower values of the Rayleigh number. Among these analytical 

studies, several hundred percent Nusselt number increases were reported 

for high Rayleigh numbers. 

Martin and Fargie [36] and Test [39] considered the effects of 

tençerature-dependent viscosity and reported that heat transfer coeffi­

cients were further enhanced by viscous heat generation within the fluid. 

Viscous effects were negligible for Prandtl numbers of 100 or less. Test 

further indicatê  that errors of more than 50 percent in both f and Nu were 

predicted when the ôv/ôr • ôu/ôr term in the momentum equation was 

eliminated. For most liquids, the heat transfer coefficent increases 

with increasing temperature due to decreasing viscosity. However, the 

increase in most cases is seen to be less than 100 percent. It is clear 

at this stage that temperature-dependent density has a greater effect on 

the heat transfer coefficient than Temperature-dependent viscosity. 

A distinction between variable density and variable viscosity effects 

can easily be made in an analytical formulation; however, it is difficult 

to sort out the two effects in an experiment. At present, a number of em­

pirical correlations have been proposed for heating or cooling of various 

fluids in horizontal tubes with approximately constant wall temperature 

[101-104]. In most of these investigations, the data correlations were 

attempted with a view toward obtaining average Nusselt numbers via various 
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modifications of the Graetz solution which applies to the uniform wall 

temperature situation. For the constant heat flux boundary condition, the 

free convection persists throughout the tube. Experimental data for the 

heating of air [105-108], water [94, 95, 109-112] and ethylene glycol 

[111, 112] are available at present. Good agreement between analytical 

predictions and experimental results was reported for air and ethylene 

glycol by Mori and Futagami [30] and Siegwarth et al. [31], respectively. 

A single parameter, Rayleigh number or Grashof number, was found to correlate 

most of the data satisfactorily. 

Experimental results from PetuKhov and Polyakov [94, 95] and Petukhcv 

et al. [no] show that the constant property solution in the entrance re­

gion is valid only for very low Rayleigh numbers. The only analytical 

confirmation of this effect is a recent study for rectangular channels with 

uniform heat flux [43] The pure forced convection approximation is shown 

3 
to be applicable only when the Rayleigh number is less than about 10 . An 

analytical solution for the entrance region of circular tubes with free 

convection effects is not yet available. 

In earlier investigations [94, 95, 105, 111], it has been estab­

lished that experimental works directed towards the assessment of the free 

convection effect in the tube inlet will be inhibited by the number of 

parameters to be controlled, by a lack of knowledge regarding the form of 

the function needed to correlate the data, by the difficulty of obtaining 

the precise measurements required for laminar flow, and by the difficulty 

of maintaining the specified thermal boundary conditions. Experimental 

data for the entrance region are very limited. These considerations suggest 
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that an analytical solution for the entrance region with buoyancy effects 

is an appropriate subject for the first part of this study. 

Formulation of the Problem 

Statement of Problem 

Consideration is given to a steady, hydrodynamically fully developed, 

but thermally developing, laminar flow of a viscous Newtonian fluid in a 

horizontal tube where a step change in uniform wall heat flux is imposed 

starting at Z = 0. See Fig. 2-1. The problem involves determining the 

temperature development and the variation in heat transfer coefficient 

along the axial and circumferential directions. The variation of the den­

sity in the presence of the earth's gravitational field provides, of course, 

the motive force for the secondary flow that is under consideration. How­

ever, when the density is primarily a function of temperature, as was 

pointed out by Boussinesq [99], the variability of the density can be ig­

nored in all of the analytical expressions except the body force term. This 

effects a considerable simplification in mathematical formulation of the 

problem since part of the non-linearities associated with the material de­

rivatives are circumvented. The free convection has a major influence on 

the heat transfer coefficient. 

The analysis will start with the derivation of the governing equations 

valid for any Prandtl number. A Newtonian fluid is assumed and the vis­

cosity is assumed to be constant. 

Governing Equations 

Referring to the coordinate system shown in Fig. 2-1, the continuity 
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Fig, 2-1 Coordinate system and numerical grid for circular tube. 
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equation, the complete Navier-Stokes equations, and the energy equation in 

cylindrical coordinates become 

Continuity: 

Axial direction momentum equation: 

Pb(o aa + R #8 + " Iz) = - Iz + (2-2) 

Radial direction momentum equation; 

Pb(̂  "E + R is - ̂  ̂ ë) = - 3# + - PS cos 0 (2-3) 

Circumferential direction momentum equation: 

"̂§8 + ̂5:+ * 3z) = 1% §8 + + PS sin 8 (2-4) 

Energy equation; 

PBS(̂  + R IE + " (2-5) 

where is the Laplacian operator 

For the laminar incompressible fluid flow with heat transfer, the heat 

generation due to viscous dissipation can be neglected. This is due to 

the low Reynolds number and the low Eckert number in laminar flow. As 

shown in Ref. 39, including the dissipation term did not appear to cause 

more than a one percent change in the value of Nu. In order to compare the 
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order of magnitude of other terms in Eqs. (2-1) to (2-5), appropriate 

characteristic variables are introduced to nondimensionalize each term: 

R = ar, Z = Ẑ z, U = Û u, W = Ww, V = V̂ v, P = P̂ p, 

0 =  ̂, AT* = 3:3. (2-6) 

ÙS 

It is noted that the conventional ZÏT is taken as the difference between the 

average wall temperature and the bulk temperature at a specified location. 

However, since varies with axial position in the tube inlet region, 

this is not an appropriate reference temperature difference for the analy­

sis. By contrast, AI , defined as q"a/k, is constant along the tube axis 

for the uniform heat flux boundary condition. 

As indicated in many investigations [33, 35, 60], the pressure drop 

in the momentum equation can be treated in the following way. It is 

assumed that the pressure can be separated into two components 

P(R, e, Z) = P(Z) + P(R, 0) (2-7) 

where P(Z) is assumed to be a linear function of axial direction Z. More­

over, P(R, 9) is due to motion and hydrostatic effects, i.e., 

P(R, 0) = Pj(R, 0) + Pg(R, 0) (2-8) 

The hydrostatic pressure in Eq. (2-8) is assumed to be a function of aver­

age density and local position, relative to the center of the tube, that is, 

Pg(R, 0) = - P̂ gR cos 0 (2-9) 

By introducing Eqs. (2-7), (2-8) and (2-9) into pressure gradient terms 
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appearing in the momentum equation and combining with the gravitational 

force, the following expressions are obtained: 

- = Constant 

ÔP aPd 
- - pg cos 9 = (py - p)g COS 9 - 0̂  (2-10) 

dP 
 ̂II + pg sin 0 = (p - p̂ )g sin 9 - I ̂  

The term (p - Py)g sin 0 represents the buoyancy force which is generated 

by density gradients. 

The density difference in Eq. (2-10) can be further simplified by 

introducing an isobaric thermal expansion coefficient, P, which is defined 

as 

9 = - I (IT)̂  <2-11) 

and can be approximated as 

e " (I - (2-12) 
Pb 

P 

This approximation is exact for an ideal gas and represents a reasonable 

expression for real gases. It is also found that Eq. (2-12) is valid for 

most liquids. A higher order expression for the equation of state p(T) 

may be utilized for fluids subject to large temperature differences. After 

substitution of the characteristic variables and Eqs. (2-10) and (2-12), 

Eqs. (2-1) to (2-5) become 
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V2 

where 

+(̂ Jf i) 

- (R)'Â • 0 IR-(¥)("  ̂V L! - ̂ ) 
àz 

2" 

+ ) '=°® ® * (2-15) 

" A)' 3 ° @ ̂  ̂  ̂

+ (itJ " & - 0^^ ) "" ® » (2-16) 

By appropriately choosing Û  and Ẑ , it is possible to obtain from the 

reduced equations familiar parameters, such as Rayleigh number, Reynolds 

number, and Grashof number. The choice of U and Z should be such that 
c c 

the least number of parameters is obtained so as to facilitate correlation. 

Ẑ  = a Rê Pr is seen to be a suitable choice, since the dimensionless 

variable z will be on the order of unity and Rê Pr will not appear in the 

governing equations. With this choice and the uniform axial heat flux 
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boundary condition for the term ôT̂ /ôZ in Eq. (2-17)', Eq. (2-17) can be 

reduced to 

The second term in the left hand side of Eq. (2-18) takes into account heat 

conduction in the axial direction. Whether or not the term can be ne­

glected apparently depends on the magnitude of Rê Pr; large values of this 

parameter suppress the term. The differential equation alone is insuffi­

cient to tell how large this parameter must be in order to neglect axial 

conduction, but investigations [24, 113] have indicated that, as a general 

rule, the term is negligible for Rê Pr > 50. For the present analysis, 

this term and similar terms appearing in Eqs. (2-14) to (2-16) will be 

neglected with this reservation. Thus the energy equation becomes 

It is noted that if thermally fully developed flow is assumed, 00/02 be­

comes zero in Eq. (2-19). This assumption of fully established profiles 

can, however, be fulfilled only provided that the tube is long enough; the 

fully developed result is the asymptotic solution of the present analysis. 

Employing the hypothesis that each term in the continuity equation is 

of the same order of magnitude, the following relationship is obtained: 

- (SIIP;) ' J=FE) (" IF - ? n) -) 

where 

(2-19) 

(2-20) 
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It is thus convenient to choose U = Wa/Z for a characteristic variable. 
c c 

When the choice of and as stated above is utilized, the momentum 

equations, Eqs. (2-14) to (2?16), can be reduced to 

/sV \ 

i"' W 5r+ 

+ ) COS 0 (2-22) 

- sin 0 0 (2-23) 

Since Prandtl number is assumed to be very large, the inertia term in 

the momentum equations, Eqs. (2-21) to (2-23), can be neglected. Physi­

cally, Prandtl number expresses relative speeds at which momentum and 

energy are propagated through the system. The high Prandtl number assump­

tion is expected to be valid for most liquids, including water. This large 

Prandtl number assumption simplifies the differential equations consider­

ably. As mentioned earlier, the flow is assumed to be hydrodynamically 

fully developed before entering the heat section. This assumption is not 

considered to be very restrictive since for high Prandtl number fluids the 

hydrodynamic profiles develop more rapidly than the thermal profiles. 

As pointed out above, the characteristic variable is chosen to be 

Wa/Ẑ , which can be further simplifed to 
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When Is introduced, Eqs. (2-21) to (2-23) can be reduced to a simpler 

form with Rê  as the only parameter, that is 

 ̂= Gr* • Pr = Ra* 
V Ug 3  ̂

'fc ^ 
where Gr̂  and Râ  are modified Grashof and Rayleigh number, respectively, 

and are defined as 

Gr* = 
a Z 

V 

Ra = Gr Pr (2-25) 
a a 

Note that the Rayleigh number and the Grashof number utilized subsequently 

in this chapter are defined in this manner instead of in the conventional 

way using diameter and tube wall bulk temperature difference. 

Normalized Governing Equations and Boundary Conditions 

The pressure terms in Eqs. (2-22) and (2-23) can be eliminated by 

cross-differentiation. A stream function and vorticity function can also 

be defined, such that 

V = - (2-26) 

5 = 

thereby satisfying the continuity condition. The momentum and energy equa­

tions can now be restated in the following dimensionless forms: 
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Axial momentum equation; 

= C = constant (2-27) 

Momentum equation for secondary flow; 

7̂ 1 = (cos e i H sin 6 1̂ ) (2-28) 

Vorticity equation; 

(2-29) 

Energy equation; 

u If+^11+w (-1̂ ) (2-30) 

It is recalled that the effect of the temperature field on the flow 

field depends strongly on the value of Prandtl number which appears in 

Eqs. (2-21) to (2-23). The effect of Pr on the primary flow becomes insig­

nificant as the Prandtl number increases. This is a consequence of the 

kinetic viscosity being much greater than the thermal diffusivity. From 

Eq. (2-27), it is evident that for Pr̂ - œ the secondary flow does not 

affect the velocity field in the axial direction. This conclusion is also 

reached in Ref. [31], where the investigators utilized ethylene glycol in 

their experiments to support their analytical results. Furthermore, it 

should be noted that as Pr-»"' «>, the primary forced flow is unaffected by 

the secondary flow generated by free convection. The solution of Eq. (2-27) 

is thus simply Poiseuille flow; that is. 

w = 2(1 - r̂ ) 



www.manaraa.com

33 

The axial pressure drop associated with friction is then given by 

Poiseuille's relation [114]. 

Due to mathematical difficulty, virtually all of the heat transfer 

solutions reported to date have been obtained by neglecting the secondary 

flow. These traditional constant-property solutions will represent the 

* 
limiting case of the results to be obtained here with Râ  = 0. 

Equations (2-28) and (2-29) are second-order elliptic partial differ­

ential equations. Equation (2-29) can be substituted into Eq. (2-28) to 

obtain the stream function in biharmonic form. When vorticity is intro­

duced into (2-28), the stream function of fourth order is reduced to 

second order. As indicated in previous investigations [35, 60], the boun­

dary vorticity method required fewer than one hundred iterations to obtain 

the converged solution of Eqs. (2-28) and (2-29). When the original 

fourth-order biharmonic equation is utilized, it will take several thousand 

iterations as reported in Ref. [33]. The boundary vorticity method is pre­

ferred as considerably less computer time is required. 

Equation (2-30) is a parabolic equation, and the solution can be ob­

tained by employing the available stable explicit DuFort-Frankel method 

[115]. The ADI (Alternating Direction Implicit) method [116, 117] also can 

be utilized to solve the three-dimensional parabolic equation, Eq. (2-30). 

However, more computing time is required for the ADI method than for the 

DuFort-Frankel method. 

Through symmetry, it is necessary to consider only one half of the 

circular region as shown in Fig. 2-1. Applying the non-slip condition at 

the wall and symmetry about vertical centerline, the flow field boundary 

conditions for Eqs. (2-27) to (2-29) are 
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% J  =  V  =  W =  $ = 0  a t  t h e  p i p e  w a l l ,  r  =  1  

V = i l i = 5 = 0  a t  t h e  v e r t i c a l  c e n t e r l i n e .  ( 2 - 3 1 )  

6 = 0, TT 

The most reasonable thermal boundary condition that can be physically 

imposed with the Joulean heating of cylindrical tubes is that of insulating 

the outer tube surface. The problem, then, requires the simultaneous so­

lution of the fluid and solid tube material regions. This can be achieved, 

but the nuKiber of independent parameters that must be considered is also 

prohibitively increased unless a specified experimental situation is 

alluded to. Thus, the heat transfer results are strongly dependent on tube 

wall boundary conditions. 

Newell and Bergles [33] pointed out that the inner tube wall boundary 

conditions can be bracketed by two bounds. In the first case, it is the 

fluid system that determines the circumferential temperature distribution 

at the tube wall; mathematically, this corresponds to zero circumferential 

heat conduction in the tube wall. In practice, this can be approximated 

by electrically heated glass tubes or metal tubes with very thin walls. 

In the second case, it is assumed that the tube material exhibits an in­

finite thermal conductivity; hence there are no circumferential temperature 

gradients at the tube wall. In this latter case, the heat flux varies 

around the circumference even though the average heat flux is uniform. 

Experimental data would be expected to be bracketed by solutions utilizing 

these two boundary conditions. The present solution will be carried out 

for the lower limit of zero circumferential conduction. The solution for 

the other boundary condition can be achieved by employing a technique 
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similar to that described in this chapter. 

The mathematical thermal boundary conditions can be restated as 

follows: 

•5?= 1 
ôr 

The initial conditions are 

at the vertical centerline or 

0 = 0, TT 

at the tube wall, r = 1 

(2-32) 

U  =  V = 0 = O ,  W  =  2 ( 1  -  r  )  at z = 0 (2-33) 

It does not appear that a closed form solution of Eqs. (2-28), (2-29), 

(2-30), (2-32), and (2-33) is possible. However, the finite-difference 

scheme which has been employed in many previous investigations can be used. 

Numerical Solution Using Boundary Vorticity and 

DuFort-Frankel Methods 

Application of boundary vorticity method to momentum equation 

By use of three-point, central-difference operators, Eqs. (2-28) and 

(2-29) can be transformed into a set of algebraic finite-difference equa­

tions. These equations can be regarded as having the following form; 

>2. 
(2-34) 

where f is a dummy variable and G represents the remaining terms in the 

equations. It is noted that Eq. (2-34) is a Poisson equation. With ref­

erence to the coordinate system and numerical grid shown in Fig. 2-1, the 

finite-difference formulation of Eq. (2-34) can be written as 
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ArZ ZfiAr 

fj,!-! + ̂ 1,1+1 " ̂ î,1 ̂  G 
' \2 î,j 
(r,A9)-

(2-35) 

where 

°l,j ° ̂i.j 

for Eq. (2-29) and 

G i.j = < + sin 8j 
î+l.i " ̂ i-1.1 

2Ar ) 
Multiplying by (Ar) and rearranging changes Eq. (2-35) to 

 ̂] "i.j+ f "w.j 

- 'i.j-l - (î̂ )' 'i. j+1 (2-36) 

where 

a. = 1 -

b. 
1 

Ar 

2-i 

î 
= 1 + Ar 

2-i 

and 

'̂ i • (r̂ Ae) î,j-l • (r̂ e) î,j+l 

Eq. (2-36) can be reduced to 

î̂ i-l,j •*• î̂ i,j î̂ i+l,j (̂ i (2-37) 
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Equation (2-37) is seen to be a general finite-difference expression appli­

cable to Eqs. (2-28) and (2-29) and is a typical relation for two-dimen­

sional elliptic equations. In. calculating the secondary velocity compo­

nents using U = 1/r . ô\|f/ô0 and V = - ô\]j/ôr, a five-point central-difference 

formula has been employed to obtain more accurate results. The expressions 

are as follows: 

fi 
âr 12Ar(̂ 5,j " "4,j " ̂ °̂ 2,j " ̂ l̂,j)  ̂

" Î2̂ &-2 • ®̂ i-l,j " ®̂ i+l,j î+2,j) 

for i = 3, 4, ..., M - 1 

~ 12Ar(̂ -3,j • ̂ -̂2,j " ̂ 4̂-1,j) 

for i = M (2-38) 

~ôë ̂ " 12A9(" ̂ i,2 8̂ 1,3 " ̂ 1,4)  ̂  ̂

= ïfe(̂ i,j-2 " Gfi,j-1 ®̂ i,j+l " ̂ i,j+2) 

for j=3, 4, ...N-1 

" 12A8(fi,N-2 • ®̂ i,N-l 1̂,%/ "r j = N (2-39) 

Note that 3f. ./ô9 = 0 at j - 1 and N + 1 due to symmetry about the verti-
J 

cal centerline. In order to avoid the singularity at the origin of the 

cylindrical coordinates which appears in Eq. (2-35) when r = 0, a finite-

difference equation in Cartesian coordinates is employed at the origin as 

follows: 
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1̂,1 4(̂ 2,1 2̂,IW-1 ^̂ 2,N/2+l • Gi,jAr ) (2-40) 

The flow field boundary condition in Eq. (2-31) can also be written in 

finite-difference form as 

ill. . = u. . = V. . = w. , = 0 for i = M + 1 
1,] 1,] i,J 

•i,3 ' ̂1,3 - ° 

•i.j \+l.j 

for j = 1 and N + 1 

for i = M + 1 (2-41) 

When the above boundary conditions are used, a set of finite-difference 

equations may be written, after applying Eq. (2-37) to the grid points 

along the radial line j, as 

^̂ l,j + =1̂ 2,] = <1 1 = 1  

®î i-l,j î̂ i,j "*• *̂ î i+l,j ~ ̂ i 1 - 2, 3, M - 1 

i = M (2-42) 

Equation (2-42) can be written in matrix form as 

A f = d 

or 

"1=1 

"2̂ 2 ®2 

0.3 bj C3 

"M-I Sl-1 ®M-1 

"m •m 

^-1 "̂ -1 

Si • 

(2-43) 
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Here A is seen to be a tridiagonal matrix. This system can be solved ex­

plicitly for the unknowns, thereby eliminating any matrix operations. This 

method has been discovered independently by many and has been called the 

Thomas algorithm [118], The following procedure using forward elimination 

and backward substitution is utilized: 

Pi = Ci/bi 

PI = - AJPJ.I) I = 2, 3, .... M - 1 

Il - di/b; 

• Vl-l) i = 2. 3, .... M 

& ° % 

fi = i = M - 1, M - 2, 1 

The above algorithm can be applied to Eq. (2-29), with the boundairy condi­

tions given in Eq. (2-41), but the boundary condition for the equation is 

unknown. On the other hand, two boundary conditions are available for 

Eq. (2-29). The success of the boundary vorticity method is based on the 

observation that a linear relationship exists between the vorticity  ̂

and the stream function  ̂at the boundary. A more detailed discussion 

of the boundary vorticity method is given in Ref. [35]. Only a summary of 

the procedures used in this calculation is described in subsequent para­

graphs . 

Use of the boundary condition of lit. T . = ill.,, . for i = M + 1 
1-1,] 1+1,J 

re­

places some elements of the matrix ŝ uation [£«= (2-43)]; such as â , b̂ , 

"SI - SH-1̂ 1' ""y + "Wl' Vl> ̂ 1 Vl' respectively. 
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Assuming arbitrary values and for  ̂and solving the finite-

difference equations [Eqs. (2-28) and (2-29)], and are obtained 

for the boundary condition = 0 at wall. The boundary values for the 

vorticity  ̂and stream function j are related by the following 

equation; 

= &T&T (C - > (2-«) 

\ 

By using this linear relation between 5 and $ and noting that the correct 

/ON 
stream function at the boundary is ilr =0, the vorticity can be com­

puted. After the boundary vorticity is numerically determined, the numeri­

cal solution of Eqs, (2-28) and (2-29) can be carried out by a line-itera­

tive relaxation procedure using the following equation; 

f(nfl) ̂  ̂ (n) ̂  _ f(n)l (2-45) 
i,J 1,3 L i,3 i,]J 

where w is a relaxation factor. The numerical solution of the set of se­

condary flow equations [Eqs, (2-28) and (2-29)] can be started by using 

k-1 k k-1 
previous upstream values for i|f. Ç. , and .. The numerical solution 

i-,J ijJ 

is continued until the dependent variables . satisfy the following 
1,3 1,3 

prescribed error; 

e = = E Ufj - f" ,1 < 10"' (2-46) 
i,j i,j 

It is observed that the final average Nusselt number at each axial location 

differs less than 0.01 percent from the previous calculated value when the 

prescribed error of Eq. (2-46) is reached. The secondary velocity compo­

nents, u . and V. . can be obtained by using the five-point finite-
1,3 1,3 
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difference for the first derivatives as expressed in Eq. (2-39). 

A method of determining an optimum relaxation factor is not avail­

able for the present problem. However, it was found in Ref. [35] that the 

influence of over-relaxation [m > l] or under-relaxation (to < 1) on com­

puting time is not appreciable. Consequently, the relaxation factor of 

unity was used in most of the present calculations. 

The rate of convergence for the line-ideration method depends on the 

values of the parameters Râ  and z. For the calculation as Râ  = 5 x 10 , 

for example, 120 iterations are required close to the tube inlet but only 

30 iterations are required in the fully developed region (for mesh size of 

20 by 20). Details of the computer program are given in Appendix A. 

Application of DuFort-Frankel method to energy equation 

The energy equation [Eq. 2-30] is a parabolic-type, second-order dif­

ferential equation. The Alternating Direction Implicit (ADI) method has 

been recently reported as an effective means of solving the comparable 

equation for a rectangular channel [43]. Dividing the tube entrance calcu­

lation into two steps, Dravid et al, [79] utilized the ADI method to solve the 

energy equation in helically coiled tubes with some degree of success. The 

ADI method is seen, however, to be more complicated to program and requires 

more computing time than the explicit DuFort-Frankel method. In addition̂  

the stability criterion of the ADI method does not appear to be available 

for solving this non-linear, cylindrical coordinate system. To solve the 

energy equation and compare the different finite-difference schemes, the 

DuFort-Frankel method was tried. 

The stable, explicit DuFort-Frankel method [ll5] has been employed in 
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this study. The main advantage of this explicit method over the implicit 

methods is one of the directness and simplicity (explicit methods are gen­

erally algebraically simpler than implicit methods, thus saving computing 

time). It has been shown [119] that the DuFort-Frankel method, just like 

the implicit methods, is unrestricted in the choice of streamwise step 

size in boundary-layer type equations because of stability considerations. 

The original DuFort-Frankel scheme, based on a uniform grid in the 

axial direction, proceeds as follows; 

The first-order derivative for the energy equation is represented by 

,k+l Jk-1 
. - <p. . 

(2-47) 

2 
where 0[Az ] indicates that the truncation error incurred by using this 

2 
scheme is of the order of magnitude of Az . Equation (2-47) is applicable 

only when the streamwise step size is taken equally. In the present cal­

culation, however, the maximum step size is taken within the stability cri­

terion to accelerate the computation. Step size is changed in each calcu-

Ic 
lation. The axial gradient (Ô0/Ô2) is then evaluated using the following 

equation with non-equal step size, Az"*" for the present step and Az for the 

previous step, obtained by applying the Taylor series expansion: 

ii •= _ M - M + ^ 0^+21 

AZ-AZ+(AZ"+ Az+) 
(2-48) 

where Az = ẑ  - ẑ  Az"*" = ẑ  ̂- ẑ  Following the DuFort-Frankel 

scheme, the energy equation [Eq. (2-30)] can be written in finite-difference 

form as 
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- Az"̂ ) 
iiJ 1,1 

_L_L 
Ar 

Az Az"*" (AZ + Aẑ ) 

(̂ 4̂ ) ̂L.j - ̂ 4̂ ! 

2Ar / y 2 

"4.1+1 + 
k 

î,i-l 
jk+1 

A9̂  

k /4+i,i " ti.A _ il Rii+i " 4ii-A 
id\ 2Ar j \ 2A8 / 

(2-49) 

where 

and 

,̂j ̂ jA6, ẑ  ̂

"i,3 = <1 - 'D 

As a further simplification, Eq. (2-49) can be reduced to an explicit form 

which requires no iteration, as follows: 

+ AaOÏIÏ + hi.i + 4] (2-50) 

where 

A, = 

A„ = 

w. .(Az)2 
•JuuL 

Az AZ'̂ 'CAZ + Az"*") 

k 

î+1 ^̂ i **" î-l 1 

4r\Ar (riAe)' 

'̂ i î+1 

 ̂ 2r̂ Ar̂  

-Ll 
2Ar 
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r. + r. , 
A, 

5̂ = 

2r̂ Ar 
H 
2Ar 

1 

(riA9)̂  
2r.A8 

k 

î,i 

(r.Ae)' 

(az + Az"*") 4r̂ Ar̂  r̂̂ Aoy 

Az"!"̂  - Az"̂  

7 " " "i'j Az-Az+(Az- + Az+) 

4 = -

If uniform wall heat flux along the tube circumference is assumed, the 

boundairy condition of Eq. (2-32) can be restated in finite-difference form 

as 

n = 9̂  9 at 9 = 0, TT 
î,0 î,2 

k Jk (2-51) 
Wj = %2 Ar at r = 1 

Since the DuFort-Frankel method requires three levels of temperature infor­

mation, it may not be possible to start the calculation by using the 

DuFort-Frankel technique. However, a standard explicit scheme which re­

quires only two levels of temperature information can be utilized to over­

come the difficulty. The energy equation is formulated according to a 

standard explicit scheme as follows: 
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r 

r 

Ar 

k k 
h+l.i - î-1.1 

2Ar 2 
fi 

i+1 "*" 4,1-1 " ̂ 4,1 

68 

The initial conditions for Eq. (2-52) at z = 0 are 

"i.j ' 'i.j ' "•i.i ' ° 
(2-53) 

Since no heat flux is assumed at z = 0 , it is reasonable to assume that 

there is no secondary flow at z = 0, Following the procedure used for the 

momentum equation at r = 0, a finite-difference equation in Cartesian coor­

dinates is employed at the origin to avoid the singularity at the center of 

tube. By using Cartesian coordinates Instead of cylindrical coordinates 

at the origin, the energy equation can be written in finite-difference form 

for the standard explicit and DuFort-Frankel methods as follows: 

Standard explicit: 

"i.j = (i)'Ki.j + ti.j - 4.j] 

+ (TO) K.j+i + ̂ .i-i " 

k 
Jc k 
î,i+l ~ î.1-1 

2ûr 
- 2w. . 

1,] 
(2-54) 
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DuFort-Frankel method: 

w. 

. ̂-2) 
L2J ïjj : " 

Az Az"*" (AZ + Aẑ  ) 

. 9 / 

= I 
CJ - CL) 

for i = j = 1 (2-55) 

The fluid temperature can be easily determined from Fig. (2-50) with 

Eq. (2-51) as the boundary condition and Eq. (2-53) as the initial condi­

tion. The computation is continued until the fully developed condition is 

reached. The fully developed point is defined as the point after which 

the dimensionless temperature profile does not change appreciably. The 

average axial dimensionless temperature gradient is then zero. That is 

It is noted that although the bulk fluid temperature keeps increasing 

after passing through the fully developed point, the average wall and bulk 

fluid temperature difference will remain constant; thus, the Nusselt number 

is at the asymptotic value for the constant heat flux case. Going further 

Also, the viscosity may decrease to the point where the flow becomes tur­

bulent. The laminar flow assumption will fail to cover these regions. 

To summarize the computation process, the following steps are taken 

to obtain the heat transfer results: 

P=0 
dz 

(2-56) 

downstream in the tube, however, the fluid will eventually start to boil. 
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(1) With standard explicit techniques, the solution of the energy-

equation [Eq. (2-30)] is started by assuming u = v = 0 = 0 at 

z = 0 as the initial condition. 

(2) The secondary flow associated with the stream and vorticity 

equations [Eqs. (2-28) and (2-29)] at k = 1 can be solved with 

the given temperature value obtained from step (1). 

(3) With two levels of u, v and 0 at k = 0, 1, the DuFort-Frankel 

method can be applied to solve the energy equation [Eq. (2-30)]. 

The marching process is continued until the fully developed con­

dition is reached. 

(4) The average Nusselt number at any point can be evaluated using 

the local bulk fluid temperature and the local average wall tem­

perature. 

(5) When the fluid temperature at step k is known, the stream function 

and the secondary velocity at step k can be obtained by using the 

boundary vorticity method. 

(6) Processes (3) to (5) are repeated until the fully developed con­

dition is achieved. 

It is possible to obtain heat transfer results in the entrance region 

within 10 minutes for Rayleigh numbers smaller than 10̂  on the Iowa State 

University IBM 360/65 system. However, for high Rayleigh numbers, Râ  

6 
= 10 , for example, it takes around 15 minutes to obtain the heat transfer 

results in the entrance region. 
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Consistency and Stability of the Numerical Solution 

Two concerns with the finite-difference solution are convergence and 

stability. Convergence is generally studied by expanding the dependent 

variables in Taylor series expansions in a manner such that the difference 

between the partial differential equations and the finite-difference repre­

sentation can be observed. This difference is known as the truncation 

error of the equations, and, if it vanishes in the limit as the mesh size 

is reduced, the finite-difference representation is said to be consistent. 

This technique also can be used to compare various difference formulations 

by observing the order of the corresponding truncation errors. Stability 

implies that round-off errors, or errors from any other source, are not 

amplified or allowed to grow in subsequent steps in the solution. Stability 

is a very important consideration in die present study. Often the best 

scheme in terms of truncation error is completely unstable and must be 

altered. 

A stable, consistent scheme is said to be convergent in the limit 

as the mesh size reduced. In dealing with stability and convergence, the 

ideas of Von Neumann [l20] and Lax and Richtmyer [l2l] were used. Examples 

of first- and second-order derivatives in the momentum equation can be 

approximated on a uniform grid. The truncation error of the derivatives 

can be shown by using three-point central finite-difference operators as 

follows; 

First derivatives: 

(2-57) 
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Second derivatives; 

£|\ __ ' ''i.i + oW (2.58) 

ôr /. . ùsĉ  

2 
The truncation error is seen to be of the order of Ar in Eqs. (2-57) and 

(2-58). It is clear that there is less truncation error as the grid size 

is reduced. Equations (2-57) and (2-58) are considered to be standard 

approximations for convergence and accuracy. 

For the DuFort-Frankel method, the second derivatives are approximated 

as: 

fk fk -k+1 fk-1 „ 
i,i _ ^i+l.i ^i-l,i " ^i,i " i,1 + il 

- (6r)̂  + ... (2-59) 
ar* 

Comparison of Eqs. (2-58) and (2-59) shows that the DuFort-Fraakel repre-

Ic 
sentation of the second derivative is obtained by replacing the f. . term 

1,3 

in the standard explicit representation by jl'/ * truncation 

2 2 
error in Eq. (2-59) is 0[(Az/Ar) ] + 0[Ar ]. To provide a mathematically 

2 2 2 2 
correct representation of â f/ôr and ô f/ô9 the mesh must be refined in 

such a way that 

lim (f )= 0 

Az ̂  0 ; 

Ar 

It is also desirable that Az/Ar be small in a given calculation so that the 

finite-difference approximation is reasonably accurate. However, the 
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2 2 2 
leading term in truncation error is really (Az/Z\r) . ô f/ôz . It is also 

2 2 
known that ô f/ôz is negligibly small compared to the other second de-

2 2 2 
rivatives indicated in the energy equation [Eq. (2-17)], ô f/ôr and 1/r . 

2 2 
ô f/ô0 . Thus, the finite-difference representation in Eq. (2-59) would 

be expected to be a good approximation even for Az/Ar and Az/A9 approxi­

mately equal to unity. 

The stability criterion of the DuFort-Frankel method in this non­

linear, cylindrical, three-dimensional coordinate system has not been 

pointed out in previous investigations. However, the stability criterion 

can be obtained by employing Von Neumann's ideas [l20]. Using equal grid 

spacing in the r, 6, and z directions to simplify the derivation, the en­

ergy equation in finite-difference form as follows: 

Ak+1 Jfc-1\ k k k 
( j-T.i w) + u " i-1.1 + V î.i+1 " '̂ i.1-1 
V 2Az / 2Ar  ̂r 2AG 

Jc . .k k Jx. Jx. k 
_ %+i.i ̂  Vi.i ' 

Ar" • 

.k ,k k+1 k-1 

w 

r̂ A9̂  
(2-60) 

where 

k k k 
w - u - "ijj V - j 

and the 2w term shown in Eq. (2-30) has been neglected, since a constant 

term will not have an effect on the stability analysis. 

When it is assumed that the error due to the finite-difference approx­

imation will be of the same form as the function 0, the error should sat­

isfy Eq. (2-60). 
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Let the error Ô be 

5k _ = (2-61) 

where i = and a, P, and y are eigenvalues. Substituting this expres­

sion into Eq. (2-60), this equation becomes 

[f + ^ ^ 
L Ar̂  (rAe) J L ^ (rA0) J 

= cos p Ar + 2 —cos (yAS) + 2i sin ( pAr) 
àr (rAB) L  ̂

- V sin (YAe)j (2-62) 

where 

To insure that the error should not be magnified as z increases, it is nec­

essary and sufficient that 

iTll  ̂1 (2-63) 

Equation (2-62) can be solved with any value of g and y and the condition 

that |T|| ̂  1 defines the stability criterion as 

^ + % .u_| 
I Ar rA9 rAr' 

In the present calculation Az is taken as 0.9 Az given by the equation 

in Eq. (2-64) to be on the safe side. The strearawise step Az is therefore 

controlled by this stability condition. It appears that for larger 
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secondary flow, larger Rayleigh numbers, for example, Az becomes smaller. 

This stability condition of Eq. (2-64) must be satisfied if the solution is 

to be stable. This was, in fact, verified during early computations by 

deliberately choosing to cause a step size and observing the computation 

to go unstable. Clearly, even for the implicit method, there is an upper 

limit on the size of the streamwise step beyond which the numerical solu­

tions no longer bear reasonable resemblance to the exact solutions to the 

governing partial differential equation. It is suggested that it is nec-

essairy to examine stability conditions before the solutions can be trusted, 

even in the ADI method used in Ref. 79. 

Heat Transfer Results 

Thermal and Hydrodynamic Development 

For the present Newtonian laminar flow heat transfer problem with 

uniform heat flux axially and circumferentially, the thermal and hydrody­

namic fields depend on Rayleigh number, and dimensionless axial position. 

The dimensionless temperature for example, depends on Ra* and z. 
Si--

The development of temperature along the vertical centerline is illustrated 

* 4 
in Fig. 2-2 for a typical high value of Râ  = 5 X 10 , The fluid tempera­

ture before the heated section is uniform and heating starts at z = 0. The 

secondary flow is weak at the tube inlet; thus, the temperature profile is 

initially symmetric about the center. The symmetric temperature profile is 

destroyed by the stronger secondary flow further downstream. The top fluid 

temperature near the wall is warmer than the bottom fluid temperature as a 

result of the secondary motion. The minimum temperature occurs on the ver­

tical centerline below the tube axes at radii between 0.25 and 0.5. The 
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maximun and minimum temperature at each cross-section can be seen more 

clearly in Figs. 2-6 and 2-7. The temperature profile will remain nearly 

constant after reaching the fully developed condition. 

Figure 2-3 shows the development of the horizontal centerline tempera-

* 4 
ture profile ..for Râ  = 5 X 10 . It is clear that uniform temperature 

appears between radii 0 and 0.5. The thermal boundary layer thickness 

varies from 0 at the tube inlet to about 0.4 of the radius at z = 0.293 

X 10 which will be shown in Fig. 2-12 to be near the fully developed 

region. The boundary layer approximation employed in Refs. 30 and 31, 

which neglects temperature gradients in the horizontal direction in the 

central core region for high Rayleigh number flow, is thus found to be 

valid even in the entrance region. 

Figure 2-4 presents the circumferential variation in the tube wall 

* 4 
temperature, again for Râ  = 5 X 10 with z as a parameter. These circum­

ferential tube wall temperature profiles are in qualitative agreement with 

experimental data [97]. The maximum wall temperature is located at the top 

of the tube, and this maximum temperature increases as z increases. The 

temperature around tube wall rises gradually from the bottom of 

the tube until 9 equals about 60° and then increases sharply from this 

point to the top of the tube. The temperature variation along the tube 

wall will be pronounced when the secondary flow becomes dominant. 

Values of the secondary flow velocities u and v are presented in Figs. 

2-5 and 2-6, respectively. The radial velocity is negative at the top of 

the tube due to downward fluid flow. Figure 2-5 demonstrates that the 

radial velocity along the vertical centerline increases from an Initial 

value of zero to a maximum value at approximately z = 0.0173, and decreases 
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after that until the fully developed condition is reached. The increasing 

and decreasing phenomena of radial velocity at the vertical centerline, 

however, occurs only at high Rayleigh numbers. For low Rayleigh numbers, 

Râ  = 10̂ , for example, the secondary velocity at the vertical centerline 

increases steadily from zero to a maximum at the fully developed condition. 

The secondary flow develops sooner for high Rayleigh numbers because of 

the larger differences in density between the wall and core regions. 

Figure 2-6 depicts the distribution of the circumferential secondary 

velocity. The maximum secondary motion occurs within about 1/5 of the 

tube radius from the wall. The natural convection development along tube 

axis is also shown clearly. Unlike the radial velocity at the vertical 

centerline, the circumferential velocity increases from the initial zero 

value to about the maximum value at the fully developed condition. Inflec­

tion points of velocity in the 0-component are seen to occur at the same 

location, which is about half of tube radius from the centerline. The 

boundary layer approximations reported by Mori and Futagami, in which the 

vertical direction velocity distribution in the core region was assumed to 

be uniform, are observed to be fairly good approximations for high Rayleigh 

number fully developed flows. 

Lines representing constant temperature and lines representing constant 

values of the stream functions are shown in Figs 2-7a and 2-7b. As men­

tioned earlier, the maximum temperatures occur at the top of the tube. The 

minimum temperatures for this Râ  occur on the vertical centerline below 

the tube axis at the radius of 0.5 for z = 0.5424 x 10  ̂and at a radius of 

0.4 for z = 0.02759 for the fully developed region. A study of the iso­

therms at the tube inlet for any Rayleigh number reveals that the isotherms 
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www.manaraa.com

Ra* = 5 X 10^ 
a 

DIMENSIONLESS DISTANCE, 

0̂.40 

1. 0.207 X 10": 

2. 0.800 X 10" 

3. 0.115 X 10" 

4. 0.145x10" 

5. 0.173 X 10" 

6. 0.201 X lO" 

7. 0.229 X lO" 

8. 0.260 X lo" 

9. 0.293 X 10" 

-20 0 20 

e DIRECTION VELOCITY, V 

VO 

80 

Fig. 2-6 Circumferential velocity development along horizontal centerline for Râ  = 5 x 10 



www.manaraa.com

60 

are nearly circular and concentric. This behavior can also be seen from 

the temperature profiles shown in Figs. 2-2 and 2-3. The concentric iso­

therms will be gradually distorted and finally become fully developed. At a 

* 3 
lower Rayleigh number, Râ  = 10 , for example, the fully developed iso­

therms are nearly concentric due to a weak secondary flow. As shown here 

in the high Rayleigh number region, the isotherms are distorted faster and 

will eventually exhibit fully developed patterns similar to those reported 

in previous investigations of the fully developed case [33, 35, 59]. 

There are two symmetric streamline patterns for the secondary flow; 

one pattern is presented in Figs. 2-7a and 2-7b. By studying the centers 

of circulation and their absolute values, the development of the secondary 

flow can be visualized. The centers of circulation first appear on the 

radial line 9 = 7T/2 at z = 0.5425 X 10 With increasing distance from 

the inlet, these centers tend to move upward and slightly toward the tube 

vertical centerline. With further increases of tube length, these centers 

move downward and toward the wall. The absolute value of the stream func­

tion at the "eye" increases from 0 at z = 0 to a maximum value of 18.36 at 

z = 0.01448 and then decreases to 16.88 at the fully developed condition. 

This behavior is also observed at extremely high Rayleigh numbers. For 

* 5 
Râ  = 5 X 10 , for example, the eye of the stream function moves upward 

from 9 = 'n/2, r = 0.55 (z = 0.691 x 10 to 0 = 81°, r = 0.55 (z = 0.691 

X 10 and falls to 8= 99°, r = 0.65 for the fully developed condition. 

The increasing and decreasing stream functions at the eye indicate the 

growth and decay of the secondary motion in the tube inlet region. For 

* 3 
Râ  = 10 , for example, the eye of the stream function stays at 8= ir/2, 

r = 0.55, and the absolute stream function value at the eye increases from 
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0 to a maximum of 1.97 after the asymptotic condition has been reached. 

However, since the heat transfer coefficient is obtained from temperature 

profile, the growth and decay of the secondary motion does not necessarily 

imply the increase and decrease of heat transfer coefficient. 

Figure 2-8 presents the local tube wall temperatures versus z for 

Râ  = 5 X 10 . The average wall temperature and bulk mean temperature shown 

in this figure are defined as follows: 

Average wall temperature 

T - I. j_ 4» 49 

\ - ̂  
Bulk mean temperature 

j j  0wrdrd9 
^ (2-66) 

/J wrdrd 6 
Since is identically equal to zero it is possible to verify numerical 

computations by checking the computed The temperature difference be­

tween the top and bottom of the tube wall is negligible at the tube inlet. 

However, the difference becomes considerable further downstream. The tube 

wall temperature increases gradually from the bottom to 6 = 77/2 and in­

creases rapidly from 6 = 17/2 to the top of the tube. 

The fully developed point is defined as the axial position after which 

the dimensionless temperature profiles remain constant. For practical ap­

plication, however, the fully developed condition defined in Eq. (2-56) 

p =  0  
âz 

indicates a reasonable asymptotic bound to represent hydrodynamic 
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and heat transfer results after the flow reaches the asymptotic condition. 

It is noted that the top and bottom tube wall temperature difference keeps 

on increasing after the fully developed point, although 0̂  ~ ̂  remains 

constant. 

Nusselt number 

The heat transfer results are presented in terms of Nusselt number, 

which can be obtained in two independent, but equivalent, ways. One way 

is to consider the temperature gradient at the wall, and the other way is 

to consider the overall energy balance for the axial length dz. The 

Nusselt number is defined as 

Nu = (2-67) 

Utilizing the temperature gradient at wall, the average heat transfer 

coefficient h can be written as 

h(T̂  - T̂ ).S-dZ = k -S'dZ = S'q".dZ 
R=a 

Thus, 

-h = — — (2-68) 
T - T̂  
w b 

Substituting this average heat transfer coefficient h into Eq. (2-67), the 

Nusselt number is obtained in terms of average dimensionless temperature as 

(Nu) = ̂  (2-69) 
I  ̂

Another possibility is to consider the overall energy balance, which can be 

stated as follows: 
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pCpJw H dA-dZ = h(T^ - T^).S.dZ (2-70) 

Consequently, Eq. (2-70) can be expressed as 

-5 
Since the prescribed error e in Eq. (2-46) was set to be less than 10 , it 

was expected that the numerical results for the Nusselt number would be 

valid up to four significant figures. It was found that the Nusselt number 

obtained from these two alternative definitions agreed with each other up to 

the third significant digit. The final Nusselt numbers presented in this 

chapter were taken as the average value of these two alternative Nusselt 

numbers to reduce the uncertainty. It is thus believed that the 20 by 20 

mesh size at each cross-section is satisfactory. The computer program and 

some numerical results are given in Appendix A and B respectively. 

As indicated in the governing differential equations [Eqs. (2-28), 

(2-29) and (2-30)] and the boundary conditions [Eq. (2-31)],one obtains 

* 
i(( = 0 and thus u = v = 0 in the tube for Râ  = 0. Without the secondary 

velocities u and v, the energy equation [Eq. (2-30)] reduces to the tradi­

tional constant-property version. Moreover, when secondary flow motion is 

neglected, the momentum and energy equations are uncoupled. Therefore, 

one can solve those equations separately. Without the influence of secon­

dary motion, the dimensionless temperature profile becomes symmetric about 

the origin and Eq. (2-30) is reduced to a two-dimensional (r and z) equa­

tion, which is much easier to solve analytically. 

ic 
The comparison of the present numerical solution for Râ  = 0 with 



www.manaraa.com

69 

previous constant property solution is depicted in Fig. 2-9. The present 

results using a 20 by 20 mesh, are in satisfactory agreement with the well 

known constant-property analytical solutions. 

It is of interest to examine the behavior of circumferential local 

Nusselt numbers, which are given by 

Nu = ~ (2-72) 
% 

Figure 2-10 presents typical circumferential local Nusselt numbers at dif­

ferent axial locations. The Nusselt numbers around the tube circumference 

distribute uniformly at the tube inlet and are gradually distorted along 

the tube. As would be expected from the circumferential wall temperature 

distributions, the Nusselt number at the top of the tube is lower than that 

at the bottom. The local Nusselt numbers around tube perimeter are in 

qualitative agreement with the experimental results given in Ref. 121 for 

water in thin-walled metal tubes. The lower heat transfer coefficient at 

the top of the tube is due to substantially reduced circulation resulting 

from thermal stratification. A negative Nusselt number at the tube wall is 

also possible, as is pointed out in Ref. 97; however, no such phenomena 

were observed in this analytical study. 

Figure 2-11 indicates the stability and convergence of the numerical 

solution where secondary flow is involved. These factors are examined most 

conveniently on the average Nusselt number plot. Recall that the trunca­

tion error of each finite-difference representation as shown in Eqs. (2-57) 

and (2-58) is of the order of magnitude of Ar̂  or A0̂ . With finer grids, one 

obtains more accurate solutions. The sensitivity of the solution to mesh 

* 5 
size is demonstrated by the calculations for Râ  = 10 . The change from 
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16 by 16 to 20 by 20 mesh is relatively small; hence, the 20 by 20 mesh is 

considered to be a sufficiently fine grid. This choice is supported by the 

* 
good agreement with previous exact solution for Râ  = 0 given in Fig, 2-9. 

To illustrate what happens as the calculation proceeds beyond the 

* 5 4 
defined fully developed point, the computed results for Râ  = 10 , 5 X 10 

and 10̂  are shown in Fig. 2-11. The "accurate" 20 by 20 mesh calculations 

were not extended beyond the fully developed point for all cases. It takes 

more than an hour of computing time for the 20 by 20 mesh, in contrast to 

the 5 minutes of computing time required for the 10 by 10 mesh, to get to 

* 5 
z = 0.1 for Râ  = 10 . As mentioned earlier, the step size in the axial 

direction is controlled by Eq. (2-64) to satisfy the stability criterion. 

Beyond the fully developed point the Nusselt number starts to increase or 

oscillate. The oscillation appears to be caused by computational insta­

bility. It is recalled that temperature and secondary velocity profiles 

keep on changing after the fully developed condition has been reached. 

Eventually, this temperature or secondary flow variation will make the 

matrix in the momentum equation or the stability criterion in the energy 

equation unstable, Brian et al. [79] reported that a similar oscillation 

occurred in the numerical solution of the helically coiled tube problem 

when the ADI method was employed. Nevertheless, they argued that this 

was a real flow oscillation instead of a computational instability. This 

seems highly unlikely. 

A similar minimum in the Nusselt number, shown in the Nu - z plot for 

constant Rayleigh number, was presented in one of the authors' previous 

reports [43] in which the ADI technique was applied. At this time the com­

puted data were considered to be valid as there was a lack of knowledge of 
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the stability criterion and of a suitable method for predicting the fully 

developed condition. On the basis of the present study it is suggested 

that the heat transfer result at the fully developed condition defined in 

Eq. (2-56) represents the asymptotic solution. In order to further ex­

amine the proper definition of Eq. (2-56) for the fully developed condition 

and the unlikely Nusselt number which occurred in the Nu - z plot, a 

* 
numerical solution for Râ  = 0 was carried out to z = 1.0, as shown in 

Fig. 2-11. The fully developed point predicted by Eq, (2-56) occurred 

at z = 0.278 and the Nusselt number at that point was 4.366, as compared 

to 4.364 for the exact solution. It is thus believed that the definition 

of Eq, (2-50) is suitable for the present study. 

Figure 2-12 presents the final results for the free convection effect 

on Nusselt number in the thermal entrance region. The numerical data are 

tabulated in Appendix B. In Fig. 2-2 constant property solutions are de-

*fc 
monstrated to be valid only for Râ  = 0 and are accurate within 5 percent 

3 * 6  
for Rayleigh numbers less than 10 . For Râ  = 10 , the developed Nusselt 

number is about 250 percent above the constant property value, and the 

entrance length is about one tenth of the constant property prediction. 

Rayleigh number is seen to decrease the thermal entrance length and increase 

the Nusselt number. The right hand dashed line in Fig. 2-12 shows the the­

oretical prediction of the exact thermal entrance length [according to Eq. 

(2-56)]. The left hand dashed line in the same figure represents the en­

trance length where the Nusselt number is five percent higher than the as­

ymptotic prediction. Comparison of the present analytical solution with the 

experimental data for water reported by Petukhov et al. [94, 95] is also 

shown in Fig. 2-12. The present numerical solution is seen to be in good 



www.manaraa.com

EXPERIMENTAL DATA [95] 

A 0.75 X 10°^ 

O  3 . 7 4 3  x i y  

•  7 . 1 3  X 1 0  
V 2.184 X 10 

Ra = 10 

5 X 10 

Nu 

5x 10 

•3 2 

z 

Fig. 2-12 Comparison of present results with experimental data for water 



www.manaraa.com

76 

agreement with the experimental data. This substantiation of the analytical 

results indicates that the Prandtl number assumption is valid even for water. 

Figure 2-13 shows various values of the thermal entrance length versus 

Rayleigh number. It indicates more clearly that the Rayleigh number asso­

ciated with secondary flow reduces the thermal entrance length. Experi­

mental predictions from Petukhov and Polyakov [94, 95] are low, generally 

bracketed by the present curves. 

The present solutions for fully established Nusselt numbers are com­

pared with some available analytical solutions in Fig. 2-14. The present 

Nusselt number predictions appear to be lower than the integral solution 

of Siegwarth et al. [31 ] which also assumes large Prandtl number, but also 

has the infinite thermal conductivity boundary condition. 

The numerical solutions from Newell and Bergles [33] for water with 

both tube wall boundary conditions are also shown in Fig. 2-14. The pre­

sent solutions for the fully developed condition fall between the two 

limited bounds proposed by Newell and Bergles [ 33] in the high Rayleigh 

number region. The difference between the present solution and the solu­

tions from Newell and Bergles [33] at lower Rayleigh numbers may "be a re­

sult of the large Prandtl number assumption being inadequate for water, 

which was used in their computations. In general, the present asymptotic 

solutions are qualitatively in good agreement with these analytical solu­

tions for high Rayleigh number. The asymptotic Nusselt number can be es-

•k 3 
timated by Eq. (2-73) with 99 percent confidence for Râ  S 4 X 10 

Nû = 1.287 (2-73) 
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Concluding Remarks 

1. The classical Graetz problem for laminar forced convection in a 

horizontal tube with uniform wall heat flux is extended by taking buoyancy 

effects into consideration. The Graetz problem with free convection is 

formulated in general, and the limiting case of large Prandtl number is 

solved by the DuFort-Frankel and boundary vorticity methods. 

2. Figure 2-12 represents the behavior of the Nusselt number in the 

entrance region. Good agreement of the analytical solutions with available 

experimental data suggests that water is included in the "large" Prandtl 

number class. 

3. The present numerical results provide confirmation that the tra­

ditional constant property solutions are valid only for the very low heat 

3 
fluxes associated with low Rayleigh numbers (less than 10 ). For 

Râ  = 10̂ , the Nusselt number in the fully developed region is about 

200 percent above the constant property solution, and the thermal entrance 

length is about one tenth of that indicated by the constant-property solu-

* 
tion. At larger Râ  the transition region between the constant property 

Nu and the fully developed forced and free convection Nu is considerable. 

The present solution clearly defines this region. Increasing Rayleigh num­

ber decreases the thermal entrance length and increases the Nusselt number. 

4. A simple correlation for the asymptotic Nusselt number and Rayleigh 

number has been established as 

* 0 177 
Nû  = 1.287 Râ  (2-73) 

* 3 
for Râ  s 4 X 10 within 1 percent error. This correlation is in reasonable 

agreement with available analytical solutions. 
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5. Oscillation and divergence behavior appearing in Réf. 79 and 

the present investigation raises questions of stability and convergence 

in applying either the ADI or DuFort-Frankel method to nonlinear, cylin­

drical, three-dimensional, parabolic partial differential equations. A 

further study in numerical stability is suggested to verify the limits of 

the available numerical schemes. 

6. The friction factor in the present solution is not affected by 

secondary flow, since the primary flow is assumed not to change (large 

Prandtl number assumption). 

7. The variation of local Nusselt numbers along the tube for uniform 

wall heat flux shows that the buoyancy effect is negligible up to a certain 

entry length z, depending on the magnitude of the Rayleigh number. The 

dip in the curves for the local Nusselt numbers in Ref. 43 would be 

avoided if the present fully developed definition were applied. It can be 

considered to be a general rule that the Nusselt number decreases as tube 

length increases. 

8. Other three-dimensional laminar heat transfer problems can be 

approached by the present analytical techniques. These include curved 

pipes subject to centrifugal force effects and rotating pipes subject to 

coriolis forces. Combined forced and free convection in inclined pipes can 

also be solved by similar numerical techniques. It should be pointed cut 

that the entrance region in many applications is very short; hence, the 

developing or three-dimensional solutions may not be required. 
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CHAPTER III. THEORETICAL SOLUTIONS FOR FULLY DEVELOPED LAMINAR COMBINED 
FORCED AND FREE CONVECTION IN HORIZONTAL TUBES WITH 

TEMPERATURE-DEPENDENT VISCOSITY 

Introduction 

The prediction of laminar heat transfer coefficients, with density-

variation taken into account, has been generally discussed in the previous 

chapter. In actual application, however, experimental data may exhibit 

considerable deviations from these analytical predictions. This is in 

large part due to the inaccuracy of the constant transport property assump­

tion in the analytical formulation and the improper tube wall boundary con­

ditions in the corroborating experiments. Most previous analytical inves­

tigations focus on determining the effects of either variable density or 

temperature-dependent viscosity. The present study extends previous analy­

ses to include variable viscosity effects on combined forced and free lam­

inar convection in horizontal tubes. 

To account for transport property variation, three empirical methods 

are often employed to correlate experimental data for laminar and turbu­

lent tube flow. In one of these methods, all properties are evaluated at 

the mean film temperature [T̂  = 1/2(T̂  + T̂ )]. This method is usually ade­

quate when the fluid properties are weak functions of temperature. The 

second traditional method is to consider viscosity temperature variation by 

introducing a viscosity correction factor,  ̂for liquids and (T̂ /T̂ )̂  

for gases, into the final correlation. Fand and Keswami [122] recently pro­

posed a third method which applies a correction factor to each dimension-

less group, Nu, Re, Pr, etc. The correction factor is the ratio of the 

dimensionless group evaluated at the bulk temperature to the group 
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evaluated at the wall temperature raised to a power, e.g., (Pr /Pr )̂ ; if 
D W 

the viscosity is the primary temperature-dependent variable, this method 

is similar to the viscosity correction method. These three methods are 

empirical and are not derivable theoretically from governing equations. 

Viscosity temperature variation has been considered in a number of ana­

lytical investigations. Considering viscosity as a simple function of 

temperature, Deissler [25] correlated Nusselt number as a function of the 

absolute surface to bulk temperature ratio for gases and liquid metals in 

laminar tube flow. The Nusselt number decreases about 7 percent from the 

constant property solution as the temperature ratio increases to 1.8 for 

gases. One realizes that all physical properties vary as a function of 

temperature; however, practically, the viscosity requires special atten­

tion (after density variation is considered). Shannon and Depew [109] in­

dicated that the Nusselt number for liquids can be correlated by (ŵ / 

when the viscosity is assumed to be exponential in temperature. Other 

studies of heat transfer which consider viscosity the only'temperature-

dependent property were reported by Rosenberg and Heliums [38], Test [39], 

Hwang and Hong [40], and Martin and Fargie [36]. The effect of variable 

viscosity is to increase heat transfer coefficients for most liquids during 

heating. It was concluded by Hwang and Hong [40] that Nusselt numbers for 

systems of variable viscosity were 15 to 20 percent higher than those ob­

tained when constant viscosity was assumed. In spite of these analytical 

studies, there is no general result that can be employed to predict the 

heat transfer data. 

As indicated in the review in Chapter I, numerous investigations were 

focused on temperature-dependent density, and associated free convection in 
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horizontal, vertical, and inclined tubes. Estimating both density and 

solved analytically the entrance region problem in vertical tubes. It is 

relatively easy to consider both density and viscosity temperature varia­

tion in vertical tube flow since the free convection generated by the 

buoyancy force is parallel to the axial flow so that the flow field re­

mains two-dimensional. In horizontal tubes, however, there is no analyti­

cal solution available to predict the effect of temperature variation of 

viscosity and density. The previous report of work in this program [97] 

established that accurate correlation of experimental data is not possible 

without considering the temperature dependency of transport properties. 

The present chapter is, therefore, aimed at two goals: 1) Obtaining a 

more accurate analytical solution to predict laminar flow heat transfer 

results in horizontal tubes by considering both density and viscosity tem­

perature variation, and 2) Introducing a parameter which is derivable from 

the governing equations so that the experimental correction factor has an 

analytical basis. 

If viscosity is temperature-dependent, the viscous force in the momen­

tum equation becomes 

viscosity as a function of temperature, Lawrence [52] 

A Parameter to Account for Variable Viscosity 

(3-1) 

The second term in the right hand side of Eq. (3-1) can be neglected for 
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the traditional constant viscosity assumption. In general, however, vis­

cosity is a function of temperature and pressure. For most applications, 

the pressure-dependence of viscosity can be neglected. With p, = ^̂ T), the 

second term in the right hand side of Eq. (3-1) becomes 

where 0 is a dimensionless temperature defined as 

T - K 

It is clear that the coefficient (-̂  ̂  AT) appears always in the normalized 

momentum equation for fluids having temperature-dependent viscosity. 

This coefficient can be redefined as a dimensionless viscosity param­

eter 

Be = Y AT (3-3) 

where Y = ̂  (|f) (3-4) 

It is readily seen that this parameter is similar to 0 AT in the Grashof 

number which accounts for density variation; y is similar to the bulk mod­

ulus p. AT in Eq. (3-1) is a reference temperature difference which can be 

T̂  - T̂  or q"a/k, depending on the tube wall boundary condition. 

Values of the viscosity parameter Be may exceed unity when the vis­

cosity is a strong function of temperature and temperature differences are 

large. For tetraethylene glycol, for example, the viscosity variation co­

efficient Y equals 0.01431 °F ̂  at 125 °F. The value of Be is then 0.572 

for AT = 42 °F and is greater than 1.0 when AT exceeds 70 °F. The numeri-
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cal values of y for water and air are 1.14 x 10 ̂  and -1,25 x 10 ̂  °F 

respectively, at 100 °F. For most gases. Be is negative for heating due to 

the increase in gas viscosity with increasing temperature. For liquids, 

whose viscosity decreases as temperature increases. Be is greater than 

zero for heating and less than zero for coding. It is noted that zero Be 

corresponds to the traditional constant viscosity case. 

It is of interest that the viscosity parameter can be approximately 

reduced to a viscosity ratio for small AT as follows; 

= 1 - — (3-5) 

The viscosity variation coefficient y is in general a function of 

temperature. However, in practical applications, it is a reasonable ap­

proximation to assume that y is constant over the operating temperature 

range. For constant heat flux, and thus constant AT, this is equivalent to 

specifying that the viscosity is an exponential function of temperature. 

p = e"̂ '(T-Tb) (3-6) 

This expression is essentially the same as that used by Shannon and Depew 

[112]. 
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Formulation of the Problem Using a Boundary Layer Approximation 

Introductory remarks 

Consideration is given to the problem of the steady, fully developed, 

laminar flow of a Newtonian fluid in horizontal circular tubes. The fluid 

is assumed to have temperature-dependent density and viscosity. Both of 

the usual heat flux boundary conditions are considered: uniform axial 

average heat flux throughout, with uniform circumferential wall tempera­

ture (Case 1), and uniform heat flux axially and circumferentially (Case 2). 

For sufficiently long tubes, a fully developed condition is reached in 

which the heat transfer coefficient changes only due to variation in the 

fluid temperature level. The secondary flow, which is caused by buoyancy 

forces, is essentially two-dimensional. 

The equations of conservation of mass, momentum, and energy for this 

problem are still too complicated to solve analytically and would require 

enormous expenditures of computer time. Accordingly, an alternate solution 

technique is utilized. The results of Siegwarth et al. [31] and Mori and 

Futagami [30] indicate that a thermal boundary layer exists when the Raleigh 

number is high. It can then be assumed that the secondary flow is composed 

of two regions: a thin boundary layer near the pipe wall and a core which 

is enclosed by the boundary layer. These investigators have been success­

ful in using boundary layer integration techniques to solve the fully de­

veloped combined free and forced convection problem. 

Since the boundary layer equations for free convection in a horizontal 

pipe are similar to those of the classical vertical plate, it should be 

possible to use the same type of dimensional reasoning for both problems. 
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The problem of free convection on vertical plates is considered in Appen­

dix C to demonstrate the reasons for choosing certain dimensionless groups. 

The dimensional analysis adopted to analyze the boundary layer and core 

equations for the present study will be discussed in the following order: 

First, the dimensional core and boundary layer equations are given. Next, 

the general nature of the core solution is discussed. The dimensionless 

boundary layer equations are derived for the thermal boundary layer. Then 

the viscous boundary layer is considered and the governing equations are 

presented. Finally, the solutions for the simplified case of large Prandtl 

number are given for the two different boundary conditions. 

Formulation of problem. Case 1 

It is important to note that two different coordinate systems are used 

as shown in Fig. 3-1. A curvilinear orthogonal coordinate system (X, Y, Z) 

is applied to the boundary layer, and rectangular coordinates(X̂ , Ŷ , Z) are 

used in the core. The Z coordinate is coincident with, or parallel to, the 

tube axis for the core and boundary layer regions, respectively. Since the 

flow is assumed to be fully developed, the velocity components are invari­

ant in the Z direction. 

Neglecting axial conduction and viscous dissipation, one can write 

the two-dimensional conservation equations for the general flow field as 

follows: 

Continuity equation: 
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Fig. 3-1 Coordinate system for boundary layer and core regions in 

horizontal tube 
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Momentum equation in X-direction: 

+ #]+& PS; (3-8) 

Momentum equation in Y-direction; 

Momentum equation in Z-direction: 

Energy equation; 

In these equations, the physical properties are considered constant except 

for the viscosity and the density, as it appears in the buoyancy term. 
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Core région equations 

As shown in Chapter II and as indicated by Siegwarth et ai, [31], 

the main flow will not be affected by secondary flow for high Prandtl 

number fluid flow. Thus, the inertial force in the axial momentum equation 

[Eq. (3-10)] for the core region can be neglected. Siegwarth further in­

dicated that the two-dimensional isotherms are horizontal. The axial 

momentum equation, therefore, can be reduced to 

v/w = Be ^ ̂  + 4 # (3-12) 
ay  ̂ wW 

where the following dimensionless variables are utilized: 

+ - lb 
iff - - Tb . f' —S (3-13) 

The solutions of the previous chapter indicate that the temperature distri­

bution in the core region is more or less isothermal for high Rayleigh 

number flow. Thus, it is easily seen that the first term on the right hand 

side of Eq. (3-12) can be neglected. With this simplification and the 

assumption of linear axial pressure gradient, the solution of Eq. (3-12) is 

simply a Foiseuille flow, that is 

w"*" = 2(1 - - y"̂ )̂ (3-14) 

With the assumption that - 0(y"*"), v̂  = v(ŷ ), and u"*" =0, the 

energy equation in the core region can be obtained as 
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where 

U Pr i> 

The reasons for choosing the characteristic velocity Û "*" are given in 

1/4 
Appendix C. With Siegwarth's result Nu = ĉ Ra , and assuming a large 

Rayleigh number, one can further simplify Eq. (3-15) as 

+ C = 0 (3-16) 
ay 

Boundary layer region equations 

The two-dimensional conservation equations for the boundary layer region 

are represented by Eqs. (3-7) through (3-11). As indicated in Chapter II, 

the pressure is assumed to be separated as follows: 

P(X,Y,Z) = P(Z) + P(X,Y) (3-17) 

The traditional boundary layer assumption is made that the pressure gradient 

in the X-direction is independent of Y so that the pressure in the boundary 

layer equals the pressure in the core evaluated at the wall. As indicated 

by Siegwarth, the pressure variation in the core is hydrostatic. The 

pressure gradient in the X-direction can thus be assumed to be 



www.manaraa.com

92 

(3-18) 

where the subscript c is used to designate the core solution evaluated at 

the pipe wall. Employing Eq, (3-18) and the thermal expansion coefficient (3 

as indicated in Chapter II, one can combine the pressure gradient and 

gravitational force in the X-direction momentum equation and reduce 

the equation as follows; 

Assuming viscosity is a function of temperature only and employing continuity 

and Eq. (3-19), one can express the X-direction secondary flow momentum 

equation [Eq. (3-8)] as 

The Y-direction momentum equation can be dropped according to the traditional 

boundary layer assumption. 

To normalize the momentum and energy equations, the following dimen-

sionless variables have been utilized 

§ - Pg sin f = p̂ gP (T - T̂ ) sin | (3rl9) 

+ gP(T - T̂ ) sin I (3-20) 
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U V . W /-O OI\ u  =  —  , v  =  —  , w  =  -  ( 3 - 2 1 )  
c c 

where the characteristic variables Û , V̂ , and ̂  are chosen as follows; 

1/2 . 

"c - ̂  (# 

1/4 

\ ̂  (3-22) 

A = * 
(GrPr) 

The detailed discussion of the procedure for choosing these variables is 

given in Appendix C. The X-direction momentum equation can thus be 

expressed in dimensionless form as follows: 

+ (0 - 0̂ ) Sin X = ̂  [u ̂  + V ̂  ] (3-23) 

Since Û is assumed to be very small compared with the tube radius a, 

2 
the term involving (A/a) in F,q. (3?23) becomes negligible. When a large 

value of Gr Pr is assumed Eq. (3-23) can be reduced to 

 ̂ sin X = ̂  [u + V ̂  ] (3-24) 
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Equation (3-24) is a general governing equation for most fluids. 

It is easily seen that the inertia terms comprising the right hand 

side of Eq. (3-24) can be ignored. With these further simplifications, 

Eq. (3-24) can be simplified to 

2 
 ̂- Be -̂  ̂  + ( 0 - 0̂  sin X = 0 (3-25) 

It should be noted that for large Prandtl number fluids the simple 

Poiseuille flow distribution in the axial direction shown in Eq, (3-13) 

is valid throughout the tube, including the boundary layer region. 

The energy equation in the boundary layer region can be simplified by 

introducing the above-mentioned dimensionless variables as follows; 

For the very thin boundary layer assumption, the conduction in X-direction 

2 
vanishes as (û/a) • Furthermore, the convection due to main flow Eq. (3--26) 

becomes negligible for high Rayleigh numbers. Therefore, the energy equation 

in boundary layer region can be simplified to 

4 - # + ^ ^  (3 - 2 7 ,  
oy 

Equation (3-27), which is the same equation as for free convection over a 

vertical plate, indicates that the major heat transfer from the wall is 

carried away by conduction perpendicular to the wall and by convection due 

to the secondary flow. 
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For convenience, the governing equations of core and boundary layer 

region are summarized as follows; 

Core Region: 

Energy v̂  + Ĉ w"*" =0 (3-18) 
ôy 

Boundary Layer Region: 

Continuity ôu . ôv _ ... 

Momentum ÂFS . Be |!I + (0 - 0 ) sin z = 0 (3-25) 
5y2 ôy ay "c 

2 
Energy  ̂̂  ̂M 

ay 
(3-27) 

Nusselt number 

The heat transfer coefficient can be obtained by considering the energy 

balance at the tube wall. The axial heat rate is given as 

q* = 277 ah (T̂  - T̂ ) = 2it ah ̂ T (3-28) 

Also, q' can be obtained by applying the Fourier equation at the tube wall 

ffa IT 

"'"'l 
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The Nusselt number can thus be obtained by combining Eqs. (3-28) and (3-29), 

f i r  
2ah 2a J 

= —I Nu = = •— I dx 
>0 l̂y.0 

•I/>U 

1/4 
dx(GrPr) ' (3-30) 

Let 

Then, as was assumed originally, the Nusselt number is obtained as 

Nu = Râ ^̂  (3-32) 

Since only one parameter. Be, appears in the governing equations, it is 

concluded that in Eq. (3-31) is a function of Be. Thus, Eq. (3-32) can 

be rewritten as 

Nu = Ci(Be)Ral/4 (3-33) 

To obtain Ĉ , one must solve the differential momentum equation [Eq. (3-25)], 

which is, of course, coupled with the energy equation [Eq. (3-27)]. 
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Analytical Solution Using Integral Method for Case 1 

The governing equations are given by Eqs. (3-7), (3-16), (3-25), and 

(3-27) with the following boundary conditions; 

at y = 0, u = V = 0 

0 = 1  f o r  C a s e  1  (3-34) 

0 = 0  
C 

where 0̂  is the dimensionless core region temperature evaluated at the wall 

(assuming the boundary layer to be very thin). It is noted that the 

boundary condition of the traditional free convection is u = 0 at y = Ô. 

However, it is apparent that the secondary flow velocity in the core is not 

zero. Therefore, it is more appropriate to set the velocity gradients equal 

to zero at y = ô. Since the secondary flow is created by free convection, 

which is similar to the upward flow of free convection along vertical plates, 

the hydrodynamic boundary layer thickness of the secondary flow along the 

tube wall is essentially the same as the thermal boundary layer thickness. 

Following the usual boundary layer integration technique, it is assumed 

that the temperature variation through the boundary layer is a polynomial 

in y. The dimensionless temperature 0 can be expressed as 

(3-35) 

with boundary conditions of Eq. (3.34) and. 
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2 
at y = 0 =0 (3-36) 

ôy 

The coefficients in Eq. (3-35) can be determined by utilizing the boundary 

conditions of Eqs. (3.34) and (3-36) with the following result: 

, , 3 
0 = 1 - I (1 - 0̂  ̂  + I (1 - 0̂ ) (̂  (3-37) 

where the boundary layer thickness 6 is a function of x. 

Differentiating Eq. (3-37) with respect to y yields the following 

expression: 

With the substitution of 0 and ̂  into Eq. (3-25) a differential equation 

is obtained for modified u, with the subscript denoting a differentiation, 

as follows: 

û  + A(1 - Tî ) u* + 1 - I n + i r? = 0 (3-39) 

where 

* 2 
u = u (rj) sin X 6 (1 - 0̂ ) (3-40) 

A = ̂ j;Be(l - 0̂ ) 



www.manaraa.com

99 

Equation (3-39) is a second-order ordinary differential equation with 

boundary conditions 

at T| = 0, 

r\ = 1, 

* 
u =0 

* 
u =0 

r\ 
(3-41) 

Equation (3-39) can be easily solved by expanding u in terms of an 

infinite series of T] and determining the coefficients from the boundary 

conditions [Eq. (3-41)]. The resulting expression for the velocity u in 

the boundary layer is 

u = sin X Ô (1 - 0̂ )T) i Jo 1 
(3-42) 

where the coefficients â  are obtained from the following linear equations: 

A 1 0 0 0 0 0 0 
0̂ 

-1 

0 A 2 0 0 0 0 0 
1̂ 

3/2 

-A 0 A 3 0 0 0 0 
2̂ 

0 

0 -A 0 A 4 0 0 0 
3̂ 

= -1/2 (3-43) 

0 0 -A 0 A 5 0 0 
4̂ 

0 

0 0 0 -A 0 A 6 0 
*5 

0 

0 0 0 0 -A 0 A 7 
*6 

0 

1 1 1 1 1 1 1 1 
.*7. 

0 

It was found that eight terms in Eq. (3-43) give acceptable accuracy. Since 

0̂  is a very small value, the value of A in Eq. (3-43) can be approximated 

by "2 Be. 
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Integrating Eq. (3-27) with respect to y from y = 0 to y = 6 and 

eliminating v by means of Eq. (3-7) yields 

0 •'0 0 

Now, if Eqs. (3-42) and (3-37) for u and 0 are substituted into Eq. (3-44), 

the following differential equation for ô is obtained: 

=3 .  ̂̂  ,1 • 2̂ . .2 dô 

where 

D̂ (l - 0̂ )0 sin X 7̂  + 3 Dg(l - 0̂ ) sin x Ô 
dx 

3 ̂  . ,2 .3 
2 —5 5̂  ̂cos X (3-45) 

0 k=0 1̂ 0 

"i'f é (k+iHk+ 
•'O k=0 k=0 

2) 

5) 

°4 - - »1 + 3®2 - "3 
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Equation (3-45) expresses the variation of the boundary layer thickness 

around the circumference of the pipe. To solve Eq. (3-45), an expression 

for the variation of 0̂  with respect to x must be obtained. The boundary 

condition for Eq. (3-45) is obtained by assuming the symmetry of the 

dÔ diA: 
boundary layer at x =0 i.e., ̂  = 0 which yields 

3 1/4 
 ̂= ̂ 2(1 - 0PD3 ̂  at X = 0 (3-46) 

The core temperature evaluated at the wall, 0̂ , is obtained by 

integrating Eq. (3-16) with respect to x̂  from = 0 to x̂  = VI - ŷ ,̂ 

with the following result: 

d0 r Vl - y"̂  ̂ fVTTT̂  
I V dx = - C. ŵ dx (3-47) 

JQ JO 

A mass balance at any height in the pipe reveals that the flow rate downward 

in the core must equal the flow rate in the boundary layer at that value 

of X. Therefore, the temperature variation in core is given by 

30  ̂Vl -
B r " w'̂ dx'̂  (3-48) 

Jo ôy 

where 

J" Vl - y r  ̂  
V dx̂  = I udT\ 

0 J o  
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By substitution of Eqs. (3-42) and (3-13) for u and w*", respectively, 

Eq. (3-48) can be solved for ——. This derivative can be written in terms 
dy 

of the boundary layer coordinate x by recognizing that 

ŷ  = - cos X (3-49) 

The resulting expression is 

3 
d0 , C, sin X 
dT = ̂  — — (3-50) 

(1 - 0̂ )6pD̂  

Once the core temperature distribution is determined, the bulk tempera­

ture, or dimensionless mixing cup temperature, can be obtained by integrating 

the product of the core temperature times the axial velocity profile as 

follows: 

ri rVt - + + + 
=1 I 0̂  w dx dy = 0 (3-51) 

-̂1 -̂ 0 
"c 

0 

Substituting Eq. (3-13) for w"*" and utilizing Eq. (3-49) to transform the 

coordinate system in Eq. (3-51) yields: 

Jr\ 

IT 
4 

0 sin X dx = 0 (3-52) 

This equation is used as a constraint to determine the boundary values of 

0 at X = 0. 
c 

The coefficient is obtained by introducing Eqs. (3-31) and (3-38) 

into Eq. (3-32), and the result is given as 



www.manaraa.com

103 

 ̂3(1 - 0̂ ) 
dx (3-53) 

Equation (3-53) can be integrated, provided that 0̂  and Ô are given as 

functions of x. 

Equations (3-50) and (3-45) represent the system of two coupled ordinary 

differential equations to be solved for 0̂  and Ô. Since 0̂  and 6 are 

symmetrical about a vertical axis through the center of the pipe, it is only 

necessary to integrate Eqs. (3-50) and (3-45) from x- = 0 to x = ff. The 

initial value of ô at x = 0 is given in Eq. (3-46); however, the initial 

value of 0 at X = 0 is not available. An initial value of 0 at x = 0 can 
c c 

be obtained by using Eq. (3-52) as one constraint. The value of for each 

fixed value of Be is, therefore, determined by solving Eqs. (3-50), (3-45), 

and (3-53). This solution requires an interaction procedure. 

Equations (3-50) and (3-45) were integrated numerically by using the 

Fourth-Order Runge-Kutta method and assuming initial arbitrary value of 0̂  

and initial condition of Eq. (3-46) for Ô at x = 0. With an initial value 

of assumed the new value of is obtained by means of Simpson's rule. 

This new value of is carried on for the next calculation. In this manner, 

the procedure is repeated until the new calculated value of is equal to 

the previous Ĉ . Thus, 6 and 0̂  are determined as the iterative procedure 

completed. More details of the calculation procedure are given in Appendix 

D. A computing time of 15 seconds was required for one Be with 100 divisions 

around the circumference, using the Iowa State IBM 360/65. 
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Formulation and Solution for Case 2 

The second boundary condition considered in this analysis is uniform 

heat flux axially and circumferentially (Case 2). It is assumed that for 

high Rayleigh number flow, the boundary layer method is still valid for 

Case 2. The assumptions made in Case 1 will also hold for this second 

boundary condition. The solutions of laminar free convection from a vert­

ical plate with uniform surface heat flux [123] indicate that average 

1/4 
Nusselt number is proportional to Ra for high Prandtl number fluid flow. 

With this conclusion, one may expect that the Nusselt number of Case 2 will 

1/4 
also be proportional to Ra 

The derivations of Case 2 are exactly the same for Case 1, and the 

governing equations are represented by Eqs, (3-7), (3-16), (3-25), and 

(3=27). The notation used in Case 2 is the same as for Case 1, except that 

the temperature difference AT is taken as T̂  - T̂ , The procedures of inte­

gration are similar to Case 1, where it is assumed that the dimensionless 

temperature in the boundary layer region can be expressed as a function of 

y. 

The coefficients of Eq. (3-54) are determined by the following boundary 

conditions : 

(3-54) 

(3-55) 
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The result for 0 is, then. 

1̂ c, „ . . 3 4 
0 - 0̂  = — 6(1 - 2V[ + 2ti - T) ) (3-54) 

where 

Tl = y/ô 

in Eq. (3-27) can be easily obtained by differentiating Eq. (3-54) with 
oy 

respect to y with the following result: 

Q 
 ̂ (-1 + - 2rp) (3-55) 

Substituting Eqs. (3-54) and (3-55) into Eq. (3-27) yields the differential 

equation for u as follows: 

2 C C 
+ -̂  Be (1 - 3t|̂  + 2rp)  ̂6(1 - 2r\+ 2r] 

- rf) sin X = 0 (3-56) 

The boundary conditions of Eq. (3-56) are chosen as 

y = 0, 

y = 6, 

u = 0 

ôu 
ôy 

= 0 (3-57) 
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Integrating Eq. (3-56) using a series solution yields the velocity 

profile in the boundary layer as: 

u = 6 sin X ̂  T1 
k+1 

k=0 k+1 
(3-58) 

where b̂  are the solutions of the following linear equations: 

A 

-3A 0 A 3 0 0 0 0 

2A -3A 0 A 4 0 0 0 

0 2A -3A 0 A 5 0 0 

0 0 2A -3A 0 A 6 0 

0  0  0  2 A - 3 A 0 A 7  

1 1 1 1 1 1 1 1  

4 
C, 

0 

2 

4 

0 

0 

0 

(3-59) 

and A = Ĉ /2 Be. 

By substitution of Eqs. (3-54) and (3-58) for 0 and u into Eq. 

(3-44), an ordinary differential equation in 6 is obtained as follows: 

^ 1 2  ^ 1 4  - 3  d 6  
— = Ô sin X Ê  2̂  + —(6 cos x + 4 o sin x ̂  )Ê  (3-60) 

where 
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E — ' t  4 Z- (k + 1) (k + 2) 
k=0 

Eg —-— (—-— _ — — 1 — —) 
5 k 4- 1  ̂k  +  2  2 k + 3  k + 5  k+6 ' '  k=0 

The temperature distribution in the core region 0̂  which appears in 

Eq. (3-60) can be obtained by integrating the energy equation [Eq. (3-47)], 

By substitution of Eqs. (3-58) and (3-13) for u and w into Eq. (3-47) 

and changing the variable ŷ  to x by Eq. (3-49), the ordinary differential 

equation for 0 is obtained, as follows: 

3 
d0 , C. sin X 

The initial condition of Eq. (3-60) is taken as: 

1 

a t  X  =  0,  0 = 1  (3- 6 2 )  •H 
for the same reason indicated in the previous section. The initial condi­

tion for 0̂  at X = 0, however, is not known. It is possible to start by 

assuming an initial value for 0̂  at x = 0 until the constraint condition of 

Eq, (3-52) is met. Equations (3-60) and (3-61) are coupled and can be 

solved numerically by the fourth-order Runge-Kutta method. The constant 

is obtained from the dimensionless wall temperature defined as: 

T - T, 
». - frf (3-63) 

W D 



www.manaraa.com

108 

Integrating Eq. (3-63) with respect to x from 0 to yields 

•IT 

0 dx = TT (3-64) I 0 " 

The constant can therefore be obtained by substituting ̂  from 

Eq. (3-54), with y = 0, into Eq. (3-64), and the result is 

ii: 0 dx C; = (3-65) 

6 dx 

The detailed computing procedures for solving Eqs. (3-60), (3-61), and 

(3-65) are given in the program listing shown in Appendix D. 

Heat Transfer Results 

The heat transfer results for the present problem can be generally 

indicated as 
1 

Nu = Cj(Be) Râ  (3-33) 

The computed values of the coefficient are tabulated in Table 3-1 for 

various values of Be. 

The effect of viscosity variation on the heat transfer coefficient is 

clearly shown in Table 3-1 and in Fig. 3-2. It is noted that Be = 0 in the 

present analysis considers viscosity to be constant. The constant viscos­

ity solution for Case 1 has a numerical value of = 0.8781, which is 

lower than the value of = 0.942 given in Ref. 31. The disagreement 

between these solutions is due to the utilization of different profiles 

for the secondary velocity u and the temperature profile in the boundary 

layer. It is noted that the asymptotic Nusselt number given in the prev­

ious chapter, Eq. (2-74), can be converted to the present notation, and 

this solution and the present solution for Be = 0 are restated as follows: 
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Table 3.1 Coefficient Ĉ  for various Be 

Case 1 Case 2 

Be IV
 
o
 

Be < 0 Be IV
 
o
 

Be < 0 

Be Cl Be Cl Be Cl Be Cl 

0.0 0.8781 0.0 0.8781 0.0 0.6643 0.0 0.6643 

0.1 0.8854 -0.1 0.8713 0.1 0.6752 -0.1 0.6547 

0.2 0.8942 -0.2 0.8653 0.2 0.6873 -0.2 0.6466 

0.3 0.9047 -0.3 0.8596 0.3 0.7006 -0.3 0.6398 

0.4 0.9175 -0.4 0.8542 0.4 0.7149 -0.4 0.6347 

0.5 0.9330 -0.5 0.8487 0.5 0.7302 -0.5 0.6312 

0.6 0.9519 -0.6 0.8433 0.6 0.7465 -0.6 0.6291 

0.7 0.9748 -0.7 0.8378 0.7 0.7636 -0.7 0.6286 

0.8 1.002 -0.8 0.8322 0.8 0.7816 -0.8 0.6274 

0.9 1.035 -0.9 0.8265 0.9 0.8006 -0.9 0.6265 

1.0 1.074 -1.0 0.8208 1.0 0.8205 -1.0 0.6247 

1.1 1.1209 1.1 0.8414 

1.2 1.1748 1.2 0.8635 

1.3 1.2359 1.3 0.8870 

1.4 1.2979 1.4 0.9120 

1.5 1.3368 1.5 0.9388 

1.6 0.9680 

1.7 1.0000 

1.8 1.0356 

1.9 1.0759 

2.0 1.1227 
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1.4 
CASE 1 

CASE 2 

Nu 

J Ra 

0.9 

0.8 

0.7 

0.6 
-1.0 1.0 0 2.0 

Fig. 3-2 Coefficient as function of viscosity parameter Be 
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Nu = 0.585 Ra°'215 (2-74) 

Nu = 0.6643 Ra°"25 (3-33) 

The prediction of Eq. (2-74) utilized the boundary conditions of Case 2. 

The lower exponential power in Eq. (2-74) is probably due to the high 

Rayleigh number assumption in the present analysis. 

For Be > 0, which corresponds to heating, with viscosity decreasing as 

temperature increases, increases with increasing Be for both boundary 

conditions. Be can usually be increased by increasing heat flux and thus 

increasing AT. For fixed AT, the Be value of a high viscosity temperature 

sensitive fluid is higher than that of a low-viscosity temperature-dependent 

fluid. In Case 1, for example, the coefficient Ĉ  for Be = 1.5 is about 

55 percent higher than that for the constant viscosity prediction. In 

Case 2, the constant Ĉ  for Be = 2.0 is more than 70 percent above the con­

stant viscosity value. Computation instability is observed when Be is 

greater than 1.5 in Case 1. 

Under cooling conditions (Be < 0 for most liquids), Ĉ  decreases as 

the absolute value of Be increases. The difference of Cĵ  between Be = 0.0 

and -1.0 is about seven percent in both cases. 

The physical reason for the higher prediction of Nu with temperature-

dependent viscosity is the thinner boundary layer associated with stronger 

secondary flow along the tube wall. Figure 3-3 presents the boundary layer 

thickness around the tube circumference for Case 1. The boundary layer 

is thinner at the bottom of the tube; it gradually becomes thicker at x = 

ir/2 and suddenly becomes very thick near the top of the tube wall. Figure 

3-3 also indicates that the boundary layer thickness decreases with 
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Be = 1.5 
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2 
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TT 0 
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9 

Fig. 3-3 Boundary layer thickness distribution along tube wall 

with Be as parameter 
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increasing Bei Since the Nusselt number is inversely proportional to the 

boundary layer thickness for constant Rayleigh number, the Nusselt number , 

increases as Be increases. For most fluids, the viscosity gradient is 

large for higher Be due to larger AT. Thus, there is less resistance to 

motion along the tube wall. The increased velocity along the tube wall 

creates a stronger secondary flow which, in turn, increases the heat trans­

fer coefficient. 

The temperature and velocity profiles in the boundary layer for Case 1 

are given by Eqs. (3-37) and (3-42), respectively. The secondairy velocity 

and dimensionless temperature profiles are seen to be similar to those 

profiles for the fully developed case discussed in the previous chapter. 

Figure 3-4 indicates the temperature distribution in the core region at 

the vertical centerline for Case 1. Since it is assumed that the isotherms 

in the core region are horizontal. Fig. 3-4 actually shows the temperature 

variation in the whole core region for various Be. The temperature distri­

bution near the wall is shown in Fig. 3-5. The viscosity parameter has a 

minor effect on the temperature distribution in the core region since there 

is a small temperature gradient in that region. The parameter Be has a 

significant effect on the secondary velocity as shown in Fig. 3-5. It is 

clearly seen that secondary velocity increases as Be increases. 

The final heat transfer results are tabulated in Table 3-1 and shown 

in Fig. 3-6. For practical application, these results can be correlated 

by the following equations within 99 percent of accuracy [l24]: 
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Fig. 3-4 Temperature distribution in the core region with Be as parameter 
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1 - 0  
0 0.5 = 1.0 1.5 

Be —1.0 0.5 -1.0 

0.5 

0.3 0 0.2 
u 

Fig. 3-5 Secondary velocity and temperature distributions in boundary 

layer region with Be as parameter 
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Case 1 

2 
1.5 2: Be % 0 Nu = (0.8823 + 0.0153 Be + 0.1481 Be 

+ 0.00334 Bê ) Râ ^̂  (3-66) 

1/4 
0 > Be a -1.0 Nu = (0.877 + 0.0563 Be) Ra ' (3-67) 

Case 2 

2.0 2 Be a 0 Nu = (0.661 + 0.140 Be - 0.0098 Bê  

+ 0.027 Bê ) Râ /̂  (3-68) 

2 
0 > Be ̂  -1.0 Nu = (0.663 + 0.0886 Be + 0.00526 Be ) 

Râ /* (3-69) 

As indicated by Morcos and Bergles [97], a number of experimental in­

vestigations have provided data which could be compared with the present 

analysis. However, since the Morcos and Bergles [97] data are the most 

recent and fully documented, their data will be compared with the present 

analysis. Since the film temperature was used in their correlation, it 

was necessary to utilize bulk mean temperature to recalculate all dimen-

sionless parameters. The comparison is shown in Figs. 3-6 through 3-9. 

Figure 3-6 reveals the comparison of the present Case 1 solution and 

data for a metal tube using water and ethylene glycol as the working fluids. 

It is clear that the constant viscosity solution. Be = 0, is valid only 

for Be < 0.5 and that the experimental results depart from the constant 

viscosity prediction as Be Increases. 

A similar comparison for water and ethylene glycol with the glass 

tube, which approximates the Case 2 boundary condition. Is indicated in 

Fig, 3-7, The agreement of the present analysis and experimental results 
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Fig. 3-6 Effect of Be on Nusselt number for Case 1, comparison with data for metal tube 
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Fig. 3-7 Effect of Be on Nusselt number for Case 2, comparison with data for glass tube 
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further corroborates the importance of Be in the present investigation. 

The disagreement of the present analysis and experimental results in the 

lower Rayleigh number region seems to be due to the high Rayleigh number 

assumption in this analysis and the small AT in the experimental work, 

which increases the uncertainty of the measurements. 

A more graphic comparison of experimental results and analytical pre­

diction is presented in Figs. 3-8 and 3-9 for the metal tube and glass 

tube, respectively. The excellent agreement between the solution of Case 

1 and the experimental results for the metal tube is clearly shown in Fig. 

3-8, The deviation of experimental data from the analytical solution is 

seen to be within 10 percent. The correlation of Eq. (3-66) has 

thas verified to be valid for intermediate and high Rayleigh number flow. 

A comparison of the present Case 2 solutions with glass tube experi­

mental results is shown in Fig, 3-9. A larger discrepancy between predic­

tion and experiment is observed, about 20 percent at low Rayleigh numbers 

and about 10 percent at high Rayleigh numbers. The larger deviation ap­

pearing in Fig. 3-9 for Case 2 seems to be caused by the tube wall effects. 

The experimental data from Ref. [97] shows that metal tube data are closer 

to boundary conditions of Case 1 than glass tube data corresponding to 

Case 2. The tube wall parameter suggests that in order to have uniform 

circumference tube wall temperature (Case 1), a thicker tube wall and 

higher thermal conductivity of tube should be utilized. 

In general, the deviation between the present analysis and experimenr 

tal data from Morcos and Bergles [97] may come from the three sources 

listed below: 

(1) Other temperature-dependent properties, such as k and ĉ , are not 



www.manaraa.com

CASE 1 

DATA FROM [97] 
METAL TUBE 

A ETHYLENE GLYCOL 
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3-8 Comparison of present analytical solution of Case 1 with experimental data for metal tube 
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CASE 2 

DATA FROM [97] 
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Nu = C,  (Be)  R9 

3 
3 X 10 4x10 

Fig. 3-9 Comparison of present analytical solution of Case 2 with experimental data 
for glass tube. 
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considered in the present analysis. 

(2) The present simple correlation of Eq. (3-33) is based on high 

Prandtl and Rayleigh number assumptions. 

(3) The thermal boundary conditions of Case 1 and Case 2 in the 

present analysis correspond to values of the tube wall parameter Pw (which 

was utilized by Morcos and Bergles [97] to correlate the tube wall effect) 

of infinity and zero, respectively. Since Pw was finite for both metal and 

glass tubes, the experimental data should actually lie between the predic­

tions of Case 1 and Case 2. 

Conclusions and Remarks 

1. A new viscosity parameter. Be = (-1/̂ ) (dp/dT) AT, has been successfully 

employed in the present analysis to study temperature dependence of vis­

cosity. For most liquids. Be is greater than zero and varies from 0 to 

about 2 for heating condition. Constant viscosity solutions. Be = 0, are 

valid only when fluid viscosity is not a strong function of temperature. 

However, when fluid viscosity varies strongly with temperature, ethylene 

glycol, for example, constant viscosity solutions are no longer valid. The 

conventional empirical viscosity temperature-dependent parameter 

can now be replaced by introducing Be. Be is obtained directly from the 

governing equation by considering viscosity as temperature-dependent. Be 

should be useful in solving convective heat transfer processes with temper-

ature-dependent viscosity. 

2. Boundary layer assumptions in which tube flow field is divided into 

two parts, boundary layer region and core region, seem to be valid for the 
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present analysis. Characteristic variables taken from natural convection 

at a vertical plate have been verified to be reasonable. 

3, The Nusselt number for laminar convection in horizontal tubes 

with large Prandtl number fluids is proportional to Râ ^̂  for both 

limiting boundary conditions, and the proportionality constant 

increases as Be increases. The heat transfer results for Be = 1.5 in 

Case 1 and Be = 2.0 in Case 2 are about 55 percent and 70 percent, 

respectively, above the constant viscosity predictions. The final 

correlations are given in Eqs. (3-66) and (3-68) for Cases 1 and 2, 

respectively. 

4. The present analysis and the experimental data for water and ethylene 

glycol generally agree to within 10 percent. The correlation given by 

Eq. (3-66) is therefore acceptable for design purposes, for fluids with 

Prandtl numbers greater than 3. 
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CHAPTER TV. LAMINAR FLOW HEAT TRANSFER IN THE ENTRANCE REGION OF 

SEMI-CIRCULAR TUBES WITH UNIFORM HEAT FLUX 

Introduction 

Analytical results for laminar flow heat transfer in circular tubes, 

for both developing and fully developed conditions, have been well discussed 

in previous chapters. A need has been established in the present program 

for predictions of heat transfer in other geometries, specifically, the 

semi-circular tube representing a circular tube with a twisted tape insert 

of infinite pitch. 

Laminar flow heat transfer in ducts of various shapes has been cataloged 

by Shah and London [2] for different kinds of thermal boundary conditions. 

The thermally and hydrodynamically fully developed flow in semi-circular 

tubes has been considered by Eckert et al. [125] and Sparrow and Haji-Sheikh 

[126]. Entrance region solutions published in the literature, using highly 

sophisticated mathematical and numerical techniques, are generally focused 

on circular tubes, rectangular ducts, or parallel plates. However, the 

thermally developing flow region in semi-circular tubes does not appear to 

have been described in the literature. Laminar flow in tubes containing 

twisted tapes is one of the applications for this semi-circular tube flow. 

As twist ratio (defined as H/D) increases, the tape becomes straight, and 

the flow inside the tube will be similar to the flow in semi-circular tubes. 

Consideration in this chapter is given to a solution of this problem 

which uses the constant properties assumption with uniform axial heat flux. 

Two thermal boundary conditions around the walls are considered: one for 

uniform wall temperature all around the semi-circular tubes, another for 
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uniform wall temperature around the circular part of the tube and thermal 

boundary conditions represent the extremes of the fin effect of twisted 

tapes. 

The system of coordinates for steady laminar flow in the entrance region 

of a horizontal semi-circular tube is shown in Fig. 4-1. The flow is assumed 

to be hydrodynamically fully developed and thermally developing. This 

assumption is seen to be applicable for most liquids (except liquid metals) 

with a high or intermediate Prandtl number. To facilitate the theoretical 

analysis, the following assumptions are made: 

1. Physical properties of the fluid are considered to be constant 

so that no free convection or temperature-dependent viscosity 

is taken into account. 

2. Viscous dissipation is negligible. 

3. The axial pressure gradient is constant. 

4. The fluid is Newtonian. 

When cylindrical coordinates (R, 0, Z) as shown in Fig. 4-1 are intro­

duced and the assumptions stated above are applied, the governing 

differential equations are: 

Momentum equation: 

insulation in the straight section of tube. These two circumferential 

Formulation of Problem 

(4-1) 



www.manaraa.com

Fig. 4-1 Coordinate system and numerical grid for semi-circular tube 
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Energy equation: 

Two different thermal boundary conditions are considered: 

Case 1. Axially uniform heat flux and uniform wall temperature around the 

entire semi-circular tube. 

Case 2. Axially uniform heat flux, uniform wall temperature around the 

wall except from 0 = it to 6=0, where an insulated wall is 

assumed. 

To nondimensionalize the governing partial differential equations the follow­

ing dimensionless dependent variables, constants and parameters were used: 

Dimensionless radius, r = R/a 

Dimensionless velocity, w = W/W 

T - T. 
Dimensionless temperature, <f) = 

Reynolds number based on radius. Re = 
• a y ,  

UC 
Prandtl number, Pr = —— 

Dimensionless axial distance, z = 

k 

Z 
a Re Pr 

a 

2 
Dimensionless pressure drop constant, C = —= 

The momentum and energy equations can thus be simplified to the following 

dimensionless forms: 
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= C (4-3) V. 

= w (|̂  + cp (4-4) 

2 1 â 1 
where = —r 4— 4- —% —% is the Laplacian operator and 

 ̂ ôr  ̂ r Ô9 

= 2(it+ 2)/it for Case 1 

Ĉ  = 2 for Case 2 

The boundary conditions for Eqs. (4-3) and (4-4) are as follows: 

At the wall, w = 0 for both cases 

Case 1. é = (b = some constant to be determined at wall 
ŵ 

Case 2. 0 = 0̂  at r = 1, 0 < 9 < it 

^  = 0 at 9 = 0  and it» 0 ̂  r ̂  1 

The initial condition is 0 =  0, at z = 0. 

It is noted that Eq. (4-3) is Poisson*s equation and can be solved by the 

Successive Over-Relaxation (SOR) method. Equation (4-4) is a parabolic 

equation, and the DuFort-Frankel method utilized in Chapter II is applicable 

to this equation. 
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Numerical Solution and Heat Transfer Results 

DuFort-Frankel and SOR Method 

The DuFort-Frankel scheme has been well described in Chapter II. 

Equation (4-4) is similar to Eq. (2-30) in Chapter II, except that no 

secondary velocity terms appear in Eq. (4-4). Since the axial velocity w 

is symmetric with respect to the axis 8 = the temperature profile is 

also expected to be symmetric with this axis. Using a non-equal space 

derivative in the axial direction and an equal space derivative in the 

radial and circumferential directions, Eq. (4-4) can be written in finite-

difference form with grid points as shown in fig. 4-1, as follows; 

Az"2 0. .̂ +1 . 0. + 0. .̂ (Az"̂  ̂- Az"̂ ) 
isJ !LiJ LiJ 

Az Az (Az + Az ) 

i_ i_ 
r. Ar V 2 / \ 

. k+l , . 
1̂.1 

2 / \ 

k-1 

- 0. 

Ar 

Ar 

(4-5) 

î 

î.1+1 0. 
k+l 

iaJ. 

k-1 

1 i,j 

Since Eqs. (4-3) and (4-4) are uncoupled, the momentum equation associated 

with axial velocity w can first be solved independently without knowledge 

of the temperature distribution. The temperature distribution at the previous 

k k-1 
step, 0. . , 0. . is considered to be given. The present temperature can 
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be calculated by rearranging Eq. (4-5) as follows; 

. . k+1 . . k , . . k  k-1 ^ . k 
l̂ ij Ẑ'̂ i+lj 3̂ i-l,j "*" 4̂ 1,3 5̂ i,j 

where 

"*• '̂ e'̂ ij-l j+1 " ̂ l̂ ij (4-6) 

w. .z, r.., + 2r. + r. 
A i.i 1 ̂ i+1 i i-1 . 1 + 
 ̂ 1̂2 4r̂ Ar̂  (r̂ A6)̂  

 ̂ 2r̂ Ar̂  

A =IiJL!irl 

ir̂  

A _ *1.1=2 1̂+1 -̂i -i-1 1 

4 1̂2 4r̂ Ar̂  (r̂ AO)̂  

A _ ^2 " ̂ 1 

5 ""i,j Zĵ 2 

(r̂ ùG)̂  

(r.A0)̂  

"2 "̂2 — 
= Az , Zg = Ap > 2̂ 2 " ̂  Az (Az + Az ) 
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Right at the entrance, a simple explicit method is employed to solve the 

energy equation for several steps, due to the three space level require­

ment of the DuFort-Frankel scheme. 

The Poisson equation [Eq. (4-3)] for the axial velocity distribution 

can be easily solved by employing the SOR method. The constant C is 

calculated as follows: 

Let 

w 

Equation (4-3) then becomes 

(4-8) 

The average velocity W is defined as 

WRdRde (4-9) 

Thus 

/X 'WRdRde 
JJvrdrdQ = C J J grdrdS 

W 

This implies 
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Wall temperature 

The temperature inside the duct, except at the wall, can be easily 

evaluated from Eq. (4-6). To predict the temperature at the wall from the 

values at other points inside the duct, it is necessary to satisfy the 

boundary condition. For Case 1, it is assumed that the axial heat input 

is uniform and thus the wall temperature is uniform for each section. To 

satisfy the energy balance, the heat transferred across the surface must 

equal the heat transferred by conduction through the wall. Thus 

where S indicates the heated perimeter length and q" is the uniform heat 

input per unit area. By introducing dimensionless parameters Eq. (4-11) 

can be written as 

The temperature gradient at the wall can be evaluated from the temperature 

distribution inside the tube as follows: 

wall 
dS = q" . S (4-11) 

(4-12) 

ôn 
&̂.l " -̂1 

(4-13) 
|w 2ÙX 

If this relation is employed Eq. (4-12) can be expressed in finite-

difference form as; 
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» 68 M 
- 4«k.l,+ 2ÂÏ+ - 4$i_2 + %_)) 

2î à̂ * %,H-P 2V̂ AB •*• ' ''*2,N/2+l 

+ %.N/2+l)(&) = '+ 2 

where is the dimensionless wall temperature. The temperature of 

the wall can hence be calculated from Eq. (4-14), 

Similarly, the wall temperature for Case 2 can be obtained by equating 

the heat balance around the perimeter as follows: 

k ̂  dS- = q"S' (4-15) 
|w 

where S' is the heated perimeter 27ja. For Case 2, it is assumed that there 

is no heat transfer from the tube wall along straight side, 9=0 and tt. 

Applying Eq. (4-13) produces a similar expression for the tube wall tempera­

ture for Case 2 as follows; 

= IT (4-16) 

Along 9=0 and ff, however, 0̂  is determined by the assumption of 

•̂ 1 = 0. Thus, for Case 2 

% = \ 2 " 3) along 9=0 and tr (4-17) 
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Hence, 0̂  can be determined at any point in the duct from Eqs. (4-14), 

(4-16), and (4-17) for both cases. 

Nusselt number 

The Nusselt number, as discussed in Chapter II, can be obtained in two 

alternative ways depending on the method of obtaining the rate of heat 

transfer. The energy balance requires that the heat input from the wall 

must equal the enthalpy increase of the fluid. By definition, the coeffi­

cient of convective heat transfer is stated as 

h = ,"/(!„ - V (4-18) 

The first Nusselt number for both cases can thus be evaluated as 

(4-19) 

The heat transfer in an elemental length of duct dZ is 

q = h (T - T, )s • dZ 
w b 

(4-20) 

The change in enthalpy is 

dAdZ (4-21) 

Introducing the dimensionless parameters and the appropriate value of S for 

the two cases yields the Nusselt number, as follows: 
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l -È f " !  +  ( "  +  2) ]  
(Nu)̂  ̂= _ ̂  for Case 1 (4-23) 
" 0̂ (7r+2) 

n If «1 + 2] 
(Nu) = ° for Case 2 (4-24) 

1(0„ - 0) . wj 

The final local Nusselt numbers are predicted by averaging these two alter­

native Nusselt numbers to reduce the uncertainty. 

The detailed computational procedures used to obtain the local Nusselt 

numbers are shown in Appendix F. A 20 by 20 mesh size has been used in 

the present calculation. The axial step size Az is determined by the 

following equation, which yields a finer step size near the entrance where 

the axial temperature gradient is expected to be large: 

(Az)̂  = e ̂  + 0.05 n n = 1,2,3... 

n=l 

No unstable situation was observed when this axial step size was used. The 

final numerical solutions for local Nusselt number are presented in 

Appendix G. 

Heat transfer results 

Axial velocity distributions for different 9 values are indicated in 

Fig. 4-2. The velocity profiles are parabolic and have maximum values near 

the middle of the radius. The present numerical solutions agree exactly 
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Fig. 4-2 Axial velocity profile, at various circumferential 

locations 
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with the analytical solutions in Ref. 126. In accordance with the assump­

tions made in this analysis, these velocity profiles are valid throughout 

the entrance region for both thermal boundary conditions. 

Figure 4-3 shows the temperature distribution of Case 1 at 8 = ̂  for 

various axial locations. It is clear that at the entrance of the duct the 

fluid temperature is more uniform. Since the wall temperature is assumed 

circumferentially uniform, the fluid temperature becomes parabolic as the 

fluid moves further downstream, and, finally, the dimensionless temperature 

profile reaches a fully developed condition. This developing process is 

similar to the thermally developing flow in circular tubes. 

For the case of an insulated wall at the straight section of the 

circular duct (Case 2), the temperature development in the entrance region 

at 0 = -̂  is demonstrated in Fig. 4-4. The temperature gradients at r = 0 

are seen to be zero for no heat transfer across the wall. Once again, the 

temperature profiles are more uniform at the tube entrance than further 

downstream. 

The final heat transfer results are presented in Fig. 4-5. As for 

circular tubes, the Nusselt number at the entrance region is well above the 

asymptotic solution. The present solution for the fully developed Nusselt 

number for Case 1 is 6.724, which agrees well with Sparrow and Haji-Shaikh's 

solution of 6.692 [l26]. An asymptotic Nusselt number of 5.2 has been 

reported by Date and Singham [75] for their limiting case of y = # (y = H/D) 

for fully developed laminar flow in tubes containing twisted tapes. This 

limiting Nusselt number obviously conflicts with the present solution and 

Sparrow and Haji-Shaikh's solution as stated above. 
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Heat transfer coefficients for both cases seem close at the duct inlet. 

Somewhere downstream, the Nusselt number of Case 1 is seen to be higher 

than the Nusselt number of Case 2, which is due to the larger heat transfer 

area of Case 1. An interesting comparison of the present solution with the 

heat transfer results given in Chapter II for circular tubes is also illus­

trated in Fig, 4-5. It is seen that the Nusselt numbers for semi-circular 

tubes are higher than those for circular tubes. The present analytical 

solution for semi-circular tubes will be utilized in the following chapter. 
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CHAPTER V. LAMINAR FLOW HEAT TRANSFER AUGMENTATION IN TUBES 

BY MEANS OF TWISTED TAPE INSERTS 

Introduction 

Laminar flow heat transfer in horizontal straight tubes has been 

considered in detail in previous chapters. Unfortunately, the heat trans­

fer coefficients predicted and observed are relatively low. In recent 

years, the requirement for more efficient heat transfer systems has 

stimulated interest in augmentative heat transfer methods. Artificially 

roughened surfaces, extended surfaces, vortex generators, vibration of the 

surface or fluid, application of electrostatic fields, and the insertion in 

tubes of objects such as coiled wire, spinners, or twisted tapes are a few 

examples of such augmentative techniques. 

Existing systems can often be impzoved by using an augmentative method. 

But in other applications, an augmentative scheme may be mandatory in order 

for the system to function properly within the limited space. Since the 

friction factor and cost per foot of tubing are higher for augmented tubes, 

the designer must make a careful study in order to determine the net 

improvement available for such a method. 

As noted in Chapter I, devices which establish a swirl in the fluid to 

increase the heat transfer coefficient are particularly attractive 

augmentative schemes for forced convection systems. Swirl flow generated 

by twisted tape inserts appears to offer significant benefits since 

improvements in heat transfer are obtainable at relatively low cost 

(installation and pumping power). Laminar swirl flow generated by twisted 
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tape inserts was therefore chosen for the final phase of this study. 

To better explain the phenomena of swirl laminar flow heat transfer, 

the final goals of present study were set as follows: 

1. Take data under carefully controlled conditions and from these data 

develop the first experimentally-based correlation for predicting the 

associated heat transfer coefficients. 

2. Obtain reliable pressure drop data. 

3. Evaluate the usefulness of tape-generated swirl flow as an augmentative 

heat transfer technique by employing standard performance evaluation 

criteria. 

Experimental Apparatus 

Test loop 

The test facility utilized in this investigation was constructed in 

the ISU Heat Transfer Laboratory by Dr. Morcos for his straight tube 

studies [97]. The facility was designed to allow flexibility in testing 

different kinds of fluids and tubes. 

A schematic layout of the test loop is shown in Fig. 5-1. Figure 5-2 

presents a photograph of the experimental apparatus. It is a closed loop, 

low pressure system with all piping made of copper tube and brass fittings. 

The fluid was stored in a five-gallon stainless steel tank, which also 

served as a degassing tank. The loop was also equipped with a dimineralizer 

to prevent fouling of the heated tubes when distilled water was used. 

The working fluid was circulated with a small centrifugal pump. A one-

gallon accumulator, charged with nitrogen, was installed at the pump outlet 
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to dampen pressure fluctuations. The small, high speed pump and the 

accumulator ensured a stable flow. After passing the accumulator, the 

flow split into a test-section line and a by-pass line for flow control. 

In the test-section line, fluid passed through a filter, a flowmeter 

and a preheater; it then flowed through the test section and merged with 

the fluid from the by-pass line. After passing through a heat exchanger, 

the fluid returned to the pump. Two flowmeters were installed in parallel 

to measure a wide range of flow rates. The first flowmeter used was Model 

1307, size 7, Brooks rotameter with two spherical floats. A Pyrex float 

that could measure a maximum of 0.17 GPM of water and a Monel float with a 

maximum flow of 0.39 GPM of water had been calibrated for water and ethylene 

glycol. The second flowmeter was Model 1110, size 8, Brooks Rotameter with 

RV type float. The 8-RV-14 stainless steel type float had a maximum flow 

rate of 1.45 GPM of water. This flowmeter was used to extend the range of 

ethylene glycol tests. Flowmeter calibration curves are shown in Appendix 

J. 

The test section was a thin-walled stainless steel tube with a full 

length twisted tape insert. The detail specifications for this test sec­

tion will be presented later. Two ball valves, one placed upstream and 

one downstream of the test section, were used to roughly adjust the flow 

rate and control the pressure level in the heated section. The flow rate 

was more precisely controlled by a needle valve installed upstream of the 

test section. An inlet section of about 6.5 ft was used to ensure that 

the flow was hydrodynamically developed before it entered the heat section. 

The ends of the test section were electrically insulated from the rest of 
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the loop by means of short pieces of Buna N pressure hose. 

The inlet fluid temperature vas measured by a thermocouple probe 

installed directly in the fluid stream 6 ft prior to the heated section. 

The bulk temperature of the exit fluid was measured by a thermocouple probe 

at the exit of the test section. All fluid and tube wall temperatures were 

measured by 30-gage copper-constantan thermocouples fabricated from the same 

reel of Leeds and Northrup duplex wire. The thermocouples were connected 

through selector switches to a common ice bath and a precision potentiom­

eter. Eight of the thermocouples (four from each location) were monitored 

continuously on a multi-point recorder to ensure that steady-state condi­

tions were reached. 

To measure inlet pressure and pressure drop, pressure taps of 0,02 in. 

diameter were installed 1 in. away from both sides of the heated test 

section. The pressure drop across the test section was measured with an 

inclined manometer with a resolution of 0.005 in. of mercury. 

The 304 stainless steel tube was the same one used in Mbrcos' straight 

tube investigation [97]. The metal tube was chosen in preference to the 

glass tube used in his investigation because it was feared that tape 

insertion would break the glass tube. In addition, thermal stratification 

effects are expected to be negligible with swirl flow; hence, circumferen­

tial heat flow effects should not be important. The inside tube diameter 

and wall thickness were 0.401 in. and 0.02 in., respectively. The wall 

thickness was a compromise between provision of the minimum thickness 

required for maximum electrical resistance and provision of sufficient 

mechanical strength and circumferential conductance. 
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The tapes used for this investigation were made of a 60 in. sheared, 

strip of 302 stainless steel sheet of width approximately 0.38 in. with a 

thickness of 0.0182 in. and an SMS roughness of 0.0015 in. The strips 

were covered at both edges by 0.100 in. wide strips of black No. 33 Scotch 

electric tape. To assure good electric insulation, the tape assemblies 

were baked in an electric furnace at 500 °F for about 1 minute to set the 

adhesive. The tapes were then twisted by clamping each tape to the ceiling 

and suspending 50 to 100 lbs of weights from one end. The weights were 

turned to produce the desired tape twist. The tapes were lubricated with a 

soap solution and pulled into the tube. After tape installation, the total 

clearance between the tube wall and the tape was approximately 0.010 in. 

The electrical resistance between the twisted tape and the test tube was 

measured to be 5-10 KO before and after testing. With this electrical 

resistance it was reasonable to assume that there was no heat generated in 

the tape. This situation closely approximates real applications where tapes 

are inserted in existing heat exchanger tubes. Figure 5-3 shows the two 

twisted tapes prepared in this study. The twist ratio y is defined as the 

ratio of tube diameters per 180° rotation of the tape. 

The test section was heated by a dc current passed directly through 

the tube wall. The electric power supply was a 25 kw dc, 125V, 200 amp 

compound-wound generator driven by an induction motor. Power cables were 

connected to two brass bushings soldered on each end of the heated test 

section. A dummy load was constructed in series with the test section in 

order to boost the resistance and provide better control. 

The power input to the test section was determined by measuring the 
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current and the total voltage drop across the test section. This voltage 

drop across the heated section was measured by a Digitec Model 204 dc 

digital voltmeter with an accuracy of ± 1 percent and 0.005 v resolution. 

The current was measured by means of a calibrated Esterline Angus Shunt 

(240 amp/100 mv) connected in series with the test section. The voltage 

across the shunt resistance was monitored with a Leeds and Northrop 8690 

potentiometer with a resolution of 0.02 mv. 

The outside wall temperature was measured at two axial locations, 

19 in. and 44 in. from the onset of heating point. Eight thermocouples 

were placed 45° apart, circxmferentially insulated from the tube with thin 

strips of insulating paper to prevent erroneous thermocouple readings. 

The tube was then heavily insulated with 1 in. thick glass fiber insula­

tion to minimize heat loss. 

Experimental Procedure 

Test fluids 

Distilled water was the first working fluid to be tested because of 

its availability and wide application. Selection criteria for a second 

fluid required that it not only provide a substantial variation in Prandtl 

number but also extend the range of Reynolds number to lower values than 

those obtained with water. Several fluids were considered, and ethylene 

glycol was found to be the most suitable. It lowers the range of the 

Reynolds number and has a Prandtl number value as much as 30 times that of 

water. The physical properties of both fluids, as function of temperature, 

are given in Appendix I. 



www.manaraa.com

151 

Operating procedure 

At the beginning of a run, the loop was filled with the test fluid 

from the top of the degassing tank, and air was bled from all high points 

of the system. The test fluid in the degassing tank was then heated to 

eliminate the gas content while the loop fluid was circulated. Degassing 

was accomplished by bleeding a portion of the loop fluid into the top of 

the heated degassing tank. The degassing tank was occasionally vented to 

permit the vapor and gases to escape. A small condenser was used to 

condense vapor back to the tank* This was continued for about eight hours 

before initial data-taking. As noted in Ref. [97], evolution of dissolved 

gas could appreciably enhance heat transfer coefficients. 

The gas content of the fluid was measured by a Seaten-Wilson Model 

AD-4003 B Aire-Ometer and was below 10 cc/liter for water and 6 cc/liter 

for ethylene glycol. After the water data was completed for the first 

twist ratio (y = 5.08), the water was flushed out with compressed air and 

dry nitrogen. After the first twisted tape was replaced by a new tape 

with a different twist ratio, these experimental procedures were then 

repeated. 

The experiments generally proceeded by increasing power to the heated 

section (the flow rate and inlet temperature remaining constant). The 

fluid flow rate was controlled by the needle valve at the test-section 

inlet. The inlet temperature could be adjusted by controlling the heat 

exchanger cooling water rate and varying the preheater power supply. At 

each power setting, data were recorded concerning the test-section flow 

rate, inlet and exit fluid temperatures, current, voltage drop, outer 

tube wall temperatures and pressure drop. The dc power supply in the 
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laboratory had a tendency to oscillate. A continuous adjustment of the 

shunt field rheostat of the generator was required to keep the generator 

output fairly constant, and the average reading was always recorded. From 

30 to 45 minutes were usually required per run in order to establish 

steady-state conditions and record the data. 

Isothermal pressure drop data were obtained by varying the flow rate 

at room temperature and recording the reading of the inclined differential 

manometer. The present system variables for water and ethylene glycol 

were as follows; 

Twist ratio: y = 2.45, 5.08 

Inlet temperature; 50-80 °F 

Water; Flow rate; 45 - 74.97 Ibm/hr 

Heat flux: l62 - 12237 Btu/hr-ft̂  

(Prandtl number; 3-8) 

(Reynolds number; 83-2461) 

Ethylene Glycol; Flow rate: 14.4 - 299.1 Ibm/hr 

Heat flux: 1648 - 8745 Btu/hr-ft̂  

(Prandtl number; 97-191) 

(Reynolds number: 13-390) 

Data Reduction 

Heat input could be determined in two separate ways ; from the 

measured electrical power input and from the enthalpy rise of the fluid. 

Theoretically, those two independent methods should agree with each other. 
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However, due to the uncertainties in calculation of the heat loss through 

the insulation and lack of a suitable mixing chamber at the test-section 

exit, the heat balance error was as much as 15 percent at very low flow 

rates. Generally, the error was about 7 percent. In view of this 

uncertainty, the heat input was taken from the electrical power input as 

corrected for the heat loss through the insulation. The heat loss to the 

surroundings was estimated to be about 1.5 percent of the total power 

input [97]. 

The local bulk temperature at the measuring section was computed from 

the inlet temperature, flow rate, and actual power input. A linear varia­

tion in bulk temperature from the inlet to the exit of the heated length 

was assumed. The tube wall temperature drop was calculated by considering 

the steady-state, one-dimensional heat conduction equation with uniform 

heat generation inside the cylindrical tubes. As suggested by Morcos, 

this correction, less than 1 °F, was applied uniformly around the 

circumference of the metal tube. The circumferential average wall temper­

ature was computed from the eight inner wall temperature readings by 

Simpson's rule of numerical integration. 

The average heat transfer coefficient was then calculated by 

employing the measured heat flux based on the inside tube surface area, the 

average inner wall temperature, and the calculated bulk fluid temperature 

at the measuring section. The average heat transfer coefficient associ­

ated with Nusselt number can thus be calculated as follows: 

q I t  

h = (5-1) 
T T, 

b w 



www.manaraa.com

154 

Nu = (5-2) 
® k 

where D is the empty tube inner diameter and k is the fluid thermal 

conductivity evaluated at the bulk fluid temperature. 

The pressure drop for water was so small that it was not possible to 

read it with sufficient accuracy from the inclined mercury manometer. 

Hence, the pressure drop data were obtained only for ethylene glycol, under 

both isothermal and non-isothermal conditions. The fluid bulk temperature 

at the mid-point of the heated section was utilized to evaluate all 

physical properties. The mercury differential head was employed to calcu­

late the pressure drop across the test section. The friction factor was 

then obtained according to the following relation: 

It is noted that a linear variation in pressure from the inlet to the exit 

pressure tap was assumed. Since the pressure taps were on the tube wall 

within the swirl channel, the pressure they read would include the swirl 

contribution to the total static pressure. The flow established before 

entering the heated section and thermal field had little effect on axial 

velocity profiles. Eq. (5-3) was thus expected to be suitable for the 

fully developed region. The details of the computational procedure are 

shown in Appendix J. 

A FORTRAN IV computer program was written to facilitate the data 

reduction and present it in a useful form. It was run on the IBM 360/65 

computer in the ISU Computation Center. A sample of the calculation 

procedure is presented in Appendix K. Similar records of all data obtained 
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in this investigation are on file in the ISU Heat Transfer Laboratory. 

About 70 percent of all data, which represents the whole range of this 

investigation, are given in Appendix L. 

Heat Transfer and Pressure Drop Results 

Wall temperature variation 

Typical temperature variations around the tube wall for various flows 

and heat fluxes are shown in Figs. 5-4 and 5-5. Figure 5-4 indicates the 

data for water for two different twist ratios. The local tape locations 

are 90° and 120° for y = 5.08 and 2.45, respectively. The locations of 

maximum and minimum for the two tape twists (upper two sets of curves) are 

different in such a way to suggest that the temperature profiles are 

related to tape orientation rather than tube orientation. This is as 

expected since the secondary flow generated by the tapes should be much 

stronger than any buoyancy-induced secondary flow. In any event, the 

circumferential variation of tube wall temperature is small, with the 

maximum and minimum temperatures generally differing by less than 10 °F. 

A rather uniform wall temperature is reasonable due to the 

possibility of cross flow mixing through the tube-tape gap, and also due 

to the rather high conductance of the tube wall. 

Heat transfer results 

The experimental laminar swirl flow heat transfer results are 

presented in Fig. 5-6 in terms of the traditional dimensionless groups, 

Nu, Pr, Rê , and z, as well as twist ratio y. All physical properties 

are evaluated at the local bulk fluid temperature, and Pr, Rê  and z are 
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àetinea as toilows: 

H C 
Prandtl number: Pr = —* 

G D Reynolds number: Re = 
s n 

Dimenslonless axial distance z = 
D Re Pr 

s 

where G is average mass flux and D is inside tube diameter. The inside 

tube diameter rather than the hydraulic diameter was used in these param­

eters in order to best show the improvement obtainable with swirl flow 

over a comparable empty tube flow. Since the tape blocks free convection, 

the Grashof number associated with the Rayleigh number, an important param­

eter in the empty tube laminar flow, is insignificant in swirl flow. The 

fin parameter suggested in Ref. 75 and the tube wall parameter developed 

in Ref. 97 were ignored. 

The variation of the Nusselt number as a function of reduced length 

z for various Rê  and y is shown in Fig. 5-6 for water and ethylene glycol. 

The baseline shown in Fig. 5-6 represents the limiting analytical solution 

for y _ as obtained in Chapter IV for pure forced convection in a semi­

circular tube with the flat side insulated. It is evident from Fig. 5-6 

that for constant y, and with essentially constant Prandtl number and 

Reynolds number, Nusselt number is weakly dependent on reduced length. A 

constant Nusselt number represents the classical interpretation of the 

fully developed condition; hence, it is concluded that fully developed 

conditions were obtained prior to the first measuring section. Assuming 
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that Nusselt number is independent of axial length Z for fixed Rê , Pr, and 

y, a correlation of the following form will be sought: 

Nu = f(Rê , Pr, y) (5-4) 

Plots with this interpretation of all the data are shown in Figs. 5-7 

and 5-8 for y = 5.08 and 2.45, respectively. It is apparent that tighter 

tape twists (lower y value) produce an increase in heat transfer coeffi­

cient. It may also be observed that Nu varies essentially as Re™ for high 

Reynolds number flow. This would suggest a linearized correlation for the 

high Reynolds number region, similar to the usual correlation for turbulent 

flow in empty tubes. Estimated straight-line representations of the four 

sets of data are indicated in Fig. 5-9; the maximum deviation of the data 
f 

from each line is 20 percent. The heat transfer coefficient clearly 

increases with increasing Reynolds and Prandtl number and decreasing twist 

ratio. 

Correlation of data 

As shown in Fig. 5-9, the ethylene glycol data for both twist ratios 

are well above the water data at constant Reynolds number. In view of a 

suggestion from Refs. 75 and 127, the parameters Rê  and y were 

combined as one single parameter Rê /y. This parameter is similar to the 

Dean number in curved pipe flow, which accounts for the centrifugal force 

effect. The final straight line correlation for water and ethylene glycol 

with two twist ratios is shown in Fig. 5-10. After many trials, it was 

found that the following equation suitably represented the experimental 

data for RSg/y >10: 
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0.383 Pr°'35(Bê /y) 
0.622 

Nu, s 
(5-5) 

where all physical properties are evaluated at the bulk fluid temperature. 

In order to reduce the scatter of experimental data, different 

procedures were tried for producing the four sets of heat transfer 

data. To account for variable fluid properties, the temperature-dependent 

viscosity parameter Be discussed in Chapter III was first tried. It was 

found that including Be as a correlation parameter did not produce a sig­

nificant improvement. The Be data for water and ethylene glycol are 

presented in Appendix L for reference. 

Another attempt was made to improve the correlation through evalua­

tion of all fluid properties at the film temperature, T̂  = 1/2 (T̂  + T̂ ). 

However, the film temperature did not give a significant improvement over 

the correlation presented in Fig. 5-10. It was therefore decided to 

simply use bulk fluid temperature for evaluation of all fluid properties. 

The inadequacy of the viscosity correlation parameter and the film temper­

ature correlation for the variable fluid properties is probably due to 

the fact that the fluid in the tube is so well mixed by the twisted tape. 

It is evident that Eq. (5-5) is not suitable for correlation of low 

Rê /y values. As Rê /y decreases, the Nusselt number should approach 

the asymptotic value of 5.172, which was obtained analytically in the 

previous chapter. The limits are then 

Nu = 5.172 
s 

as Pr(Reg/y) 

(5-6) 

NUg = 0.383(Pr(Reg/y)̂ ''*) 
1.78, 0.35 

as Pr(Rê /y) 
1.78 

00 
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Churchill and Usagi [l28] suggest that with these two boundaries a single 

expression 

Nu 
s 
= I 5.172" + [0.383(Pr 

1/n 
(5-7) 

is usually suitable for interpolation. The right side of Eq. (5-7) can 

be interpreted as the nth-order sum of the two asymptotic solutions. The 

exponent n can be evaluated from a single intermediate value of 

1 78 
Nu(Pr Rê /y * ). However, Eq. (5-7) is relatively insensitive to n, and 

an integer value of n = 2 is found to be satisfactory. With n = 2, 

Eq. (5-7) can be rewritten as: 

11/2 (5-8) 

1 78 
The final correlation plot with Nu versus ?r(Rê /y) * is presented in 

Fig. 5-11. It is seen that Eq. (5-8) shows reasonable correlation for all 

values of Rê /y. The standard deviation of the data from the condition 

is 16.4 percent. 

Comparison with analytical prediction 

The only analytical prediction of laminar swirl flow generated by 

twisted tape inserts is given by Date and Singham [75] and Date [129],. One 

important parameter used in their analysis is the fin parameter, 

representing the fin effect of the twisted tape, which is defined as: 

k Ô 

=£in ' ïV <=-»> 

In the present investigation, the twisted tape was covered by electrical 
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insulation tape to prevent electric contact between the tape and the tube 

wall. in this study therefore approaches zero (approximately 0.124 

for ethylene glycol). A low value of is also expected to be the case 

in many practical applications since loose-fitting tapes are desirable 

from the standpoint of insertion and removal for tube cleaning. 

A comparison of the present heat transfer correlation with the 

analytical results obtained by Date and Singham [75] and Date [l29] is 

presented in Fig. 5-12. The analytical results were presented for 

= 1.85 and <» for a range of Prandtl numbers. The analytical results 

for = 0 apparently were computed only for Pr = 1.0. All of the 

solutions presented by Date and Singham, with the exception of results 

for Pr = 0.1, are included in Fig. 5-12. 

It is evident from Fig. 5-12 that has a large effect on the 

predicted value of Nu, with Nu increasing with increasing Since 

the results for Pr = 1.0 suggest that Nu for = 1.85 is approximately 

the same as Nu for = 0, it is appropriate to compare the present 

results with the data for C.. = 1.85. 
fin 

As shown in Fig. 5-12, the present correlation agrees well only with 

analytical results for Pr = 100. The analytical predictions at Pr = 500 

are seen to be far above the present correlation and those for other 

values of Pr are well below the correlation. 

Due to complexity and lack of published detail, it is not possible 

to check the solutions given in Refs. 75 and 129. However, some 

indication of the accuracy of these solutions can be obtained by 

comparing the results for y = » and " with other data. Date 

and Singham [75] reported Nu = 5.3 for y = ® and = °=>, 
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as compared to the exact value of 6.692 obtained by Sparrow and Haji-Sheikh 

[l26]. This disagreement leads one to question the accuracy of Date and 

Singham's solution. The present experimental correlation is therefore 

recommended for design. 

Pressure drop 

Itorcos and Bergles [97] found that the pressure drop for water in an 

empty tube was too low to permit detection of pressure drop variations due 

to heating. Swirl flow generated by the twisted tape insert does not 

increase pressure drop significantly. It was therefore decided that 

pressure drop measurements would be taken only for ethylene glycol runs, 

since the pressure drop level for ethylene glycol was more than ten times 

that for water. Mercury was the indicating fluid used in the inclined 

manometer. All fluid properties for heating runs were evaluated at the 

bulk mean temperature at an axial location halfway along the heated 

section. 

The Darcy friction factor data for ethylene glycol with and without 

heating are presented in Fig. 5-13 for the two twist ratios. No consistent 

difference between isothermal and non-isothermal runs was observed. 

Friction factor is seen to be independent of heat flux. 

The analytical prediction of friction factor for y = <» is given by 

Sparrow and Haji-Sheikh [l26] as follows: 

f • Rê  = C = 168.9 (5-10) 

Date and Singham [75] suggest that C = 159; the disagreement may possibly 



www.manaraa.com

10 

0,1 

10 

1—I—I I I 1111 T—I—I I I I I T—1—I Mill 

ANALYTICAL SOLUTION 
y = . [126] 

A y = 2.445 ISOTHERMAL 

# y = 5.08 ISOTHERMAL 

A y = 5.08 NON-isothermal 

O y = 2.445 NON-ISOTHERMAL 

J L II 11 i_ I I I I 

10 

Fig, 5-13 Friction factor vferus Rê  for ethylene glycol 
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be due to computational error, as mentioned above. Sparrow and Haji-Sheikh 

[126] further suggest that constant C in Eq. (5-10) decreases as the cross-

sectional area of a circular segment decreases by decreasing the cord. 

Since a tube with a tape insert has a cross-section smaller than a semi­

circular of the same diameter, the experimental results of constant C in 

Eq. (5-10) for y = <=° of twisted tape insert is also expected to be less 

than analytical prediction of 168.9. The friction factor for y = ™ was 

approximated by drawing a line parallel to the exact analytical prediction 

shown in Fig. 5-13 and bounding the lower values of the experimental data. 

This line for y = #is estimated to be 

s 

Increases in friction factor above the line of Eq. 5-11 are considered to 

be dependent on Rê /y. 

Utilizing the technique recommended by Churchill and Usagi [l28] 

yields the final best correlation for friction factor: 

ô 
= I 1 + 0.121(Reg/y)°'*5 (5-12) 

where f̂  is given by Eq. (5-11). The comparison of this correlation and 

experimental data is shown in Fig. (5-14). Equation (5-12) correlates 

the data with a maximum deviation of 30 percent. 
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Applications 

The final objective in the present chapter is to compare the swirl 

flow results with the heat transfer performance of ordinary tubes. The 

heat transfer results in an empty metal tube presented by Mbrcos and 

Bergles [97] were correlated as follows: 

NUg = 0.377 ,̂̂ 0̂.31̂ ^̂ * 0.09 (5-13) 

"k 
where Pw = (k/k̂ ) (D/t) and the subscript f indicates that all physical 

properties are evaluated at film temperature. By introducing ̂  = q"a/k 

into Grashof number, Eq. (5-13) can be rewritten as follows: 

*0.204 0.256 *0.072 
Nû  = 0.45 Gr̂  Pr̂  /Pŵ  (5-14) 

It is seen that the Nusselt number for an ordinary tube depends on Grashof, 

Prandtl number, and the tube wall parameter. However, in the laminar 

swirl tube flow Nusselt number is a function only of Pr and Rê /y as 

indicated by Eq. (5-4). 

In practical applications, the objectives mainly focus on increasing 

heat transfer, reducing pumping power, or reducing exchanger size. Consider 

the first objective of increasing heat transfer for fixed geometry. The 

heat transfer coefficient ratio of tubes with twisted tape and without 

twisted tape is obtained from Eqs. (5-4) and (5-13) as follows: 

q Nu 

% ' "If 

1.015 Pr°*''(Ee • Pwt 

Gr 0-256 pr 0.31 
il,A £ £ 
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Eq. (5-15) reveals that the Nusselt number ratio depends rather strongly 

* 
on RSg/y and Gr̂  and weakly on Pw and Pr for the same working fluid. 

For high flow rates and low heat fluxes, a large improvement in heat 

transfer coefficient is obtained. Since the Nusselt number for the empty 

tube flow is independent of Reynolds number, the usual coupling of 

augmented and empty tubes is not present. Hence, Eq. (5-15) is valid for a 
! 

constraint of fixed flow rate, pressure drop, or pumping power. A Russelt 

number ratio of 1.9 is achieved for ethylene glycol with Rê  = 216.5, 

Gr̂  = 2.708 x 10̂ , y = 5.08, Pr = 159, and Pŵ  = 0.167. 

A practical interest frequently encountered in equipment design is to 

reduce exchanger size. This goal is usually associated with a fixed heat 

duty. With this objective and the constraint of fixed flow rate, pressure 

drop, pumping power, or fixed both flow rate and pressure drop, the 

Nusselt number ratio is obtained as follows: 

A N L Nu 
"o _ o o _ s 
A N L Nu-
s s s f 

0.851 Pr̂ 'SS (Reg/y)°"G22 Pw* 

* 0.204 _ 0.246 (5-16) 

where N and N are number of exchanger tubes for without twisted 
o s 

tape and with twisted tape, respectively. A length ratio, L̂ /L̂  of 

* 4 
0.37 is obtained for water with Pr = 6.85, Rê  = 805.3, Gr̂  = 1.69 x 15 , 

* 
y = 2.45 and Pŵ  = 0.386 for fixed q and the constraint of fixed 

flow rate, pressure drop, or pumping power. 
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Concluding Remarks 

An experimental study has been conducted to investigate heat transfer 

augmentation by means of a twisted tape insert in laminar flow. The 

investigation is focused on fully developed laminar flow heat transfer and 

pressure drop in horizontal tubes with uniform axial heat flux. The 

available test apparatus allowed maximum flexibility in testing various 

fluids and different twist ratio. The following conclusions may be drawn 

from the results presented in this chapter: 

1. The Nusselt number is shown to be a function of tape twist ratio, 

Reynolds number, and Prandtl number. 

2. The final heat transfer correlation is as follows: 

3. The present heat transfer correlation conflicts with the analytical 

predictions suggested by Date and gingham [75] and Date [l29] for both 

high and low Prandtl number fluids, and is in good agreement only with 

the prediction for Pr = 100. 

4. The constant-condition comparison of Nusselt numbers for tubes with 

twisted tape inserts and without tapes is given by Eq, (5-15), If the objec­

tive is to increase heat transfer rate, two to three times of heat transfer 

improvement might be achieved, depending on flow and heat conditions. 

With fixed heat duty, the exchanger may be reduced in size by inserting 

twisted tapes according to the ratio given in Eq, (5-16). The 

performance ratios are valid regardless of the constrain (constant 

Nu = 5.172 
s 

(5-7) 
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flow rate, constant pumping power, etc.). 

5. The pressure drop data indicate that the friction factor depends 

mainly on Reynolds numbers, slightly on twist ratio and is independent of 

heat flux. The final correlation for friction factor is presented in 

Eq. (5-12). 

Although this study has verified the application of the twisted tape 

insert technique for improvement of heat transfer, the following areas 

need further investigation; 

1. The present heat transfer correlation development is based on the 

four sets of data for two working fluids and two twist ratio tapes. Even 

though the final result seems to be a good correlation of these data, a 

testing of higher viscosity fluids, under both heating and cooling 

conditions, would provide a more extensive check of the present correla­

tion. 

2. Tape fin and tube wall effects, which were ignored in this study, 

need further investigation. 

3. Use of a visible glass tube with a twisted tape is recommended for 
% 

further study of swirl flow in tubes. 

4. Other heat transfer augmentation techniques, such as utilizing 

internally finned tubes or artificial roughness tubes, should be tested 

for comparison with the very effective twisted tape technique. 
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CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS 

Laminar flow heat transfer with uniform heat flux in ordinary and 

augmented tubes has been studied analytically and experimentally to investi­

gate 1. the effect of buoyancy on heat transfer in the thermal entry region 

of horizontal circular tubes; 2. the effects of temperature dependent 

properties, particularly density and viscosity, on heat transfer in the 

fully-developed region of horizontal circular tubes; 3. heat transfer for 

constant property flow in the thermal entrance region of semi-circular tubes; 

4. and augmentation of heat transfer by means of twisted tape inserts. The 

following conclusions can be drawn from this study: 

la. An analytical solution for heat transfer in the entrance region of 

circular tubes was carried out assuming that a) density is the only tempera­

ture-dependent property, b) the fluid is characterized by a large Prandtl 

number, and c) the wall heat flux is uniform circumferentially and axially. 

The explicit DuFort-Frankel method was successfully applied to the set of 

governing partial differential equations (three-dimensional, non-linear, 

cylindrical, parabolic). An important consideration in the solution was to 

insure that the step size in the axial direction was limited by the stability 

criterion given in Eq. (2.64). 

lb. The results indicate that the traditional constant property thermal 

entrance region solutions are valid only for very low heat fluxes associated 

3 
with low Rayleigh numbers (less than 10 ) in which the temperature profiles 

are near parabolic. At higher Rayleigh numbers, Ra* = 10̂  for example, the 

Nusselt number in the fully-developed region is about 200 percent above the 

constant property solution and the thermal entrance length is about 
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one-tenth that predicted by the constant property solution. 

Ic. Rayleigh number is the most significant parameter for correla­

ting the heat transfer results. Increasing Rayleigh number decreases the 

thermal entrance length and increases Nusselt number. The final heat trans­

fer results, Nusselt number versus reduced axial length with Ra* as param­

eter, are presented in Fig. 2-12 and Appendix B. 

2a. A new viscosity parameter. Be, defined in Eq. (3.3), has been 

successfully employed to study the temperature dependence of viscosity for 

laminar flow heat transfer. This parameter is derived directly from govern­

ing partial differential equations and can be utilized to correlate experi­

mental data. 

2b. A boundary layer solution was carried out for fully-developed 

laminar flow in a horizontal circular tube, assuming large Prandtl number 

and temperature-dependent viscosity and density. The Nusselt number is 

proportional to Ra for both heat flux boundary conditions, and the propor­

tional coefficient Cĵ  increases as Be increases. The Nusselt number for 

Be = 1.5 in Case 1 (heat flux uniform axially, wall temperature uniform 

circumferentially) and Be = 2.0 in Case 2 (heat flux uniform circumfer-

entially and axially) are about 55 percent and 70 percent, respectively, 

higher than the constant viscosity predictions at the same Rayleigh number. 

The final correlations are given in Eqs. (3-66) and (3-68). In actual 

applications, the Nusselt number is expected to lie between these predic­

tions, as demonstrated by a comparison with recent data. 

3a. Laminar flow heat transfer in the thermal entrance region of a semi­

circular tube has been solved numerically for constant property fluid flow. 

The boundary conditions were chosen to approximate electrically heated 
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tubes with a strip insert: uniform heat flux and uniform circumferential 

wall temperature and uniform axial heat flux with uniform circumferential 

wall temperature except the insulated straight section. The final heat 

transfer results, Nusselt number versus reduced axial length, for both cases 

are presented in Fig. 4-5 and Appendix G. The asymptotic Nusselt numbers 

are 6.724 and 5.172 for the two respective boundary conditions. 

4a. The heat transfer coefficient for laminar flow in a metal tube with 

two twisted tape inserts has been determined experimentally. The Nusselt 

number is shown to be a function of tape twist ratio, Reynolds number, and 

Prandtl number. The bulk temperature could not be improved upon as a 

reference temperature for evaluation of properties. Correlations of the 

data are given in Figs. 5-4 and 5-7. 

4b. The present correlation of swirl flow generated by a twisted tape 

insert does not agree with the only available analytical prediction of Date 

and Singham [75], The accuracy of their solution seems questionable. 

4c. The pressure drop data with twisted tape inserts indicates that 

the friction factor depends mainly on Reynolds number, slightly on twist 

ratio, and is independent of heat flux. A correlation for friction factor 

is presented in Eq. (5-10). 

4d. The constant condition comparison of Nusselt number for tubes 

with twisted tape inserts relative to empty tubes is given in Eq. (5-12), 

Several hundred percent improvements in heat transfer coefficient are 

readily achieved depending on flow and heating conditions. 

Although the present investigation has resolved many questions con-

cerning laminar flow heat transfer in horizontal tubes, the following areas 
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are recommended for further study: 

1. The present thermal entrance region analysis considering buoyancy 

effects can be extended to curved and rotating pipes with centrifugal 

force and coriolis force effects, respectively. 

2. Although the large Prandtl number assumption employed in Chapters 

II and III is shown to be valid even for water, a more general analysis 

including Prandtl number effects in the thermal entry and fully-developed 

regions could be worthy of investigation. The present analysis in Chapter II 

with uniform heat flux boundary condition can also be extended to the 

circumferentially uniform wall temperature boundary condition. 

3. The numerical stability criterion given by Eq. (2-64) was obtained 

by employing the von Neumann condition for the present three-dimensional 

non-linear cylindrical coordinate system. The reason that numerical oscilla­

tion and divergence appeared after the fully developed condition is not 

clear; however, it appears that other investigators have observed 

similar behavior, generally without conceding that the results may be 

inaccurate. A further numerical stability analysis is necessary to verify 

the applicability of extending the available numerical schemes, namely 

ADI or DuFort-Frankel, to more complicated problems. 

4. Two working fluids, water and ethylene glycol, have been used to 

verify the applicability of the new viscosity parameter. Be, to correlate 

experimental data in Chapter III. More experiments, using different working 

fluids with heating and cooling conditions, are required to verify that this 

parameter can be employed in general for correlation. 

5. The heat transfer correlation developed in Chapter V is based on 

four sets of data for two working fluids and tapes with two twist ratios. 
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Even though the final correlation represents these data reasonably well, 

testing of higher viscosity fluids under both heating and cooling condi­

tions with variable tape fin effects would be desirable. 

6. Other heat transfer augmentation techniques, such as utilizing 

internally finned tubes and tubes with artificial roughness, should be studied. 
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COMPUTER PROGRAM FOR CHAPTER I I  
BUOYANCY EFFECT ON THERMAL ENTRANCE REGION OF CIRCULAR TUBE LAMINAR FLOW 

01 MENSI ON W< 21,21l,U(21,21),Tl(21t21ltTZ(21,21),T3( 21.21),V(21,21) 
l.-.>(21,21) ,V0(21t21),R(21) ,CITA(21 ) .2A (211, ZB(211, ZC (21) • AVS( 21 i  ,BV 
2SI21),CVS(21).PVS(21),AR(21).BRI21).CR(21>.0R(21).HZ(1$0).SHZ(150) 
3,SS(21,21) ,WU(21,21) ,NU1(150I,NU2(150),NU12( 190),SSS!21, 21),T0( 10) 
A.SO( 10),HNU(21) 

r.nMMON HR,Hft2,HC,HC2,OK,OHEG 
inMMON M,N,MI,NI,MO,ND 
REAL NUltNU2,NU12 

C 
c 
C HONGT IS THE SUBROUTINE FOR SOLVING ENERGY EOUATJON 
C HONGS IS THE SUBROUTINE FOR SOLVING MOMENTUM EQUATION 
C K)NGNU IS THE SUBROUTINE FOR SOLVING NUSSELT NUMBER 
C HONGOV TO SOLVE SECONDARY VELOCITY U AND V 
C HONG MX TO SOLVE THE MAXIMUM VALUE 
C HONGCL TO FIND THE ISOTHERMAL LINE 
C HONGAV TO FIND THE AVERAGE VAIUC 

REAn(5,100,EN0-150) H,N,OK,OMEG>RA,EN,ENN 
WR nE(6, 120) RA 

RA IS RAYLEIGH NUMBER 
W: AXIAL VELOCITY 

U,V: SECONDARY VELOCITY IN RADIAL AND CIRCUMFERENTIAL DIRECTION 
Tl,T2,T3.x THREE LEVEL OF TEMPERATURE 
VOJ VORTICITY FUNCTION 
S» STREAM FUNCTION 

WtUTE(6,121) H,N 
hMTE(6,122) OK,OME(r 
WRITE(6,123) EN,ENN 
WRITE(7,127) RA,M,N 
MI«M*1 

N| .N*l 
NO-N-1 
N2-N/2»! 
NO-1 
NOO-5 
SZZ-0.0 
Y—EN 
DO 17 I«1,1(0 
HZtn-EXP(Y> 
SZZ-SZZ»HZItl 
SHZ(I)-SZZ 
V-r«ENN 

17 CONTINUE 
DO 10 J-1,NI 
00 10 1-1,MI 
UtI,J)-0.0 
V( I ,  J)-0.0 
S(I,JI-0.0 
SS(I,J)-0.0 
V0{l,jl«0.0 
Tl(I,J)-0.0 
T2(I,J)-0.0 
T3(I,J)-0.0 
Ut t ,  J)-0.0 

10 CONTINUE 
HR-l.O/M 
W»2-HR*#2 
PI.3.1415927 
HC-PI/N 
HC2-MC**2 
CITAI l)-0.0 
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DO 9 J'2,NI 
9 CITAtJ)«=CITA(J-l)+HC 

•vt I).0.0 
00 8 I»2fS! 
R(I)=R1I-I1+HR 
Z A ( I 2 « R I I ) )  
ZStI>«tHR/(HC*R(I)l)**2 
ZC( I  )=HR*«'2/12*R(I )*HC) 
AVS(I)»1-ZA(n 
BVSdJ—2»ll»2B(n J 
CVS( I  )«1*ZA( 1) 

8 CONTINUE 
AVS{MI)«2.0 
CVS(MI)=0.0 
PVS(2J=CVS{2)/BVS(2) 
00 5 1=3,X 
pvsd)=cvs(i ) / (  Bvscn -Avsti)>»pvs(i - i ) )  

5 CONTINUE 
IM=1 
WRITe(6, 136) 
XP.ITE(6,13a) (HZd), 1-1,150» 
WRITE(6, 137) 
W».ITE(6,138) (SHZ(I),I=1,150) 
00 6 .J=1,NI 
W;KI,J!=O.O 
D .I Ô 1 = 1,M 
W! r, J) = 2*( 1-R<II«»2) 

6 -cur I  NUE 
W?.ITE(6,139) 
WRITE(6,140) I<W(X,J),I-1,H),J»1,NI) 
IM=2 
00 7 1 = 2,H 
AR[I)=(R(I+l)+2»RtI)+R(I-1))/(4*R(I)*HR2) 
BR(I)=1/((RII)»HC)*»2) 
CR( n»tR(I+l )*R( I  ) )/(2»R( I  )1>HR2) 
DR(I)«(R(n+R(I-l) )/t2»R(I >»HR2I 

7 CONTINUE 

SANZ«0.0 
KK»0 
WRITE(6,107) 
«RITE(6,118> 

C 
C 

20 IM«3 
CALL HONGTITI, T2,T3,W, U, V,AR,BR,CR,OR,NO,ERRTt HZ,R» 
IF(NO.EQ.l) GO TO 11 
CALL HCNGNUIT1,T2,T3,U,NU1,NU2,NU12,N0,AGHT,AGUZ,BULKT,ENU,ABOT, 

CHZ.R) 
0W8=AGWT-BULKT 
ANZ«NU12tNN)*HZ(NN) 
SANZ-SANZ+ÂN2 
ANU«SAN2/SHZ(NN) 
WR IT E ( 6, 10 91 NN, NUI ( NN ) ,NU2(NN> ,NU12( NN) ,  AGWT, AGHZ ,  BULKT, ABOT,ENU« 

CERRT,NS,ERRS 
WRITE(6,117) HZ(NN),SHZ(NN)tOWBtANU 

11 IM«1 
IF(RA.EQ.O.O) GO TO 12 
CALL HCNGS (S,V0.T3,RA, AVS t BVS,C VS,PVS« ERRS«NS, SS,CITA, ZA.ZB, ZC«RI 
CALL HONGUVI S,U,V,RJ 
DO 15 J»1,NI 
AU11=U(1,J)+Vtl,J) 
WUll,J)=Ht1,J)*HR/A8S(AUll) 
CO 15 I«2,M 
AUl-UlI ,J) /HR+V(I, J) / i  R(I)*HCI-1/(RII)*HR) 
WU(I,J)-W(I,J)/ABS(AU1 ) 

15 CONTINUE 
A0Z=1.0 
DO 16 I«1,M 
00 16 J>1,NI 
ADZ-AHINK AOZ,UU(I,J)) -,  

16 CONTINUE 
A0Z«A0Z*(0.9] 
N0I=N0+1 
HZ(N0I)-AHIN1(HZ(N0I),AOZJ 
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SHZ(NOI»-SHZ(NOI+HZ(NOI) 
12 !H-1 

IF(KK.GT.IOO) GO TO 99 
IF(ERRT.LT.0.01 KK-KK*1 
IF(NO.EQ.NOO) GO TO 14 
NO-NO+1 
NN-NO-1 
GO TO 20 

14 IM-1 
HRITE(6tl08) NO 
WRITE(7,125) NO 
WRITE(6,101J 
WRITE(6,115) (IT3(IiJ)»t-lfN),J-l*NI) 
WRITEt6«124) 
WRITE(6,115) (T3(HI,J»»J«1,NI) 
DO 25 J«l,NI 

25 HNU(J)»2.0/T3SHI,J» 
wRrre(6fi28> 
WRITE(6.H5I (WNUtJ),J«l,NI) 
HRITEt7,126) (T3(Ifl)fI*ltMI) 
WRITEt7,126) (T3(IiNI),I-1,HII 
WRITE(7,126J (T3(I,N2),I»ltMII 
WRITE(7,126J lT3IHIfJ)»J»lfNI) 
IF(RA.EQ.O.O) GO TO 24 
WRITE(6,104) 
MR1TE(6.110) ((U(I«J)«I-ltH).J-ltNI) 
WRITE(6tl05) 
HRITE(6.110) ((V(I,j), I=l,M),j=l,NI) 
WRITE(7,126) (U(Itl)tl-lfMI) 
WRITEl7tl26) (UJIfNI),I»ltMI) 
WRITE(7,126) (V(IfN2)tI»l,MU 
WRITEf6,103) 
WRITE(6,110) I(SiltJ)>I-2.Ht),J>ltNIt2) 
WRITEt6,106) 
WRITE<6>110) ( (V0(If J),I-2,MI),Jml,NI,2) 
CALL H0NGMX(IT,JT»XAMTfTDtT3) 
CALL H0NGCLtTDtT3) 

DO 22 I-1,MI 
00 22 J-l.NI 
sssdf J)-Aes(s(itj)> 

22 CONTINUE 
CALL HONGHXIIStJStXAMStSDtSSSi 
CALL HCNGCL(SO,SSS> 

24 IM-l 
WRITE{6,H6) 
WRITE(6,107) 
WRITE(«f118) 
NOC«NOO+5 
N0=N0*1 
NN-NO-1 
GO TO 20 

99 IM-l 

SAN2-0.0 
00 23 I«liNN 
ANZ>NU12(n*HZ(I) 
SANZ-SANZ+ANZ 
ANU-SANZ/SHZ(I) 
IF(I.EO.l) WRITE(6,141) 
HRITE(6,142) I  fSHZII ) .  MU12 ( I  ) t ANU 

23 CONTINUE 
100 F0RMATI2I5,2F10.5,F10.1,2F5.2) 
101 FORMAT!'0', 'TTT') 
103 FORMATCO'.'SSSM 
104 FORMAT CO" , 'UUU') 
105 FORMAT««O't'VVV»» 
106 FORMATCO'f« VOM 
107 FORMAT!'0' NOS* NUI NU2 '•* NU12 '  MEAN 

C TW«,' 0<TM)/DZ«f' BULK T (TW-T)#W',' (NU2-NUI)/NU2»i• 
C DT/OZ NO S»,.'  ERROR IN S») 

108 FORMAT I  «0'*'NO- SIS) 
109 FORMAT!' 't I5t3F10.4>4F10.5*2615.4>I5»E15.4I 
110 FORMAT!• ' .10E13.5) 
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115 FORMATIIOF13.6* 
116 FORMAT!«o«, 

117 FORM AT ( '  • •40X,2f:15.*,F15.6»FH.4l 
118 FORMATC • ,49X , 'H/.*, 12X, • SH£« «9X. •TW-TB* ,3Xt'AVERAGE NU'I 
120 FORMAT!'1' , / / ,31X,'RAYlEIGH NUMBER 

C) 
121 FOR M AT I* •f30X,*MESH SIZE M AND N ' ,2110) 
122 FORM ATI' « ,30X,'nK AND RELAXATION FACTOR ',F10.6, 

CF10.2) 
123 FORMAT I  « «,30X,'EXP(-Y+0Y*N) Y AND BY •,2F10.2I 
124 FORMAT!' '««TTTWWW'I 
125 FORMAT!• «,15) 
126 F0RMATISF10.5) 
127 FORMAT!' «,F10.1,215) 
128 FORMAT(• LOCAL NUSSELT NUMBER") 
136 FORMAT!'O',» MARCHING STEP HZ ' )  
137 FORMAT!'0', '  MARCHING LENGTH SHZ •) 
138 FORMAT!' •,10E13.6) 
139 FORMAT!'O','  AXIAL VELOCITY W «I 
140 FORMAT!' •,10F13.6) 
141 FO RM AT I  '  1' ,40X ,  « NO '  ,  10 X, '  Z '  ,  1 OX, '  NU' ,5X, '  AVERAGE NU' I  
142 FORMAT!' •,39X»I9,E16.6,F9.4,F11.4)  
150 STOP 

END 

SUBROUTINE HQNGT(TltT2,T3,M,UtVtARtWtCRtOR«NOtERRT,HZ»R> 
DIMENSION Tl(2lt21)tT2!21,21l»T3I21«2ll»HI21t21),UI21t21)tV(21t21) 

l,ARI21).8R(21),CR(21)t (3R(21)tHZI150)*ZTI21«21),KI21I 
COMMON HR,HR2,HC»HC2»OK,OMEG 
COMMON H,N,MI,Nf»M>iND 
DO 5 J-1,NI 
DO S I"1,MI 
T1!I,J)«T2!ItJl 
T2!I,J)-T3!I#JI 

5 CONTINUE 
IF!NO.GT.l) GO TO 20 

C 
C STANDARD EXPLICT METHOD 
C 

CC 1-1/HR2-VI1, 1)/! 2*HR ) 
CC2«1/HR2»V1X,1)/!2»HR) 
CC3" !-1 ) »! W! 1, 1)/HZ !  NO )-4/HR2 ) 
T3ll,l)-ICCl»T2!2,l)+CC2»r212,Nn^!2/HR2l*T2I2.(«/2*lKCC3»T2ll, II 
C-2«W11, in/I W! 1,1)/HZ! NOI I 

DO 10 J-1 ,NI 
T3I1,J)-T3I1,1) 
DO 10 I-2,M 
61«1/HR2+1/12»R1n«HRI-U!l,J»/!2»HR> 
B2-W!I,J)/HZINO)-2/HR2-2*BRII) 
B3-l/HR2-.'l /C2»RI I)»HR) HI! 1» J )/(2*HRI 
64<BR!I)-VUiJI/I2*RII )*HC) 
B5-BRIII»V!I,JI/I2«R!I)*HCI 
IF!J.E0.1.0R*J.eQ .NI) GO TO 6 
T3II,JI-!Bl»T2II*l,J)>B2»T2II,JI-»B3*T2(I-X,JI+B4*T2!l,J»l)+B5»T2(I 

C»J-l)-2*M(ltJI)*HZINQI/W(t,JI 
60 TO 4 

6 17-6 
IFIJ.EQ.ll T3!I,J)-IBl»T21I+l,JI»B2»T2II,J)+B3»T2!I-l#JI*2»BRm» 

CT2!I,J*X)-2»M!1,J))»HZINO)/WlltJ) 
IF!J.EO.NII T3II,J)-IBl«T2II«ltJ)»B2*T2II,JI'»B3*T2! I-l ,J)+2»8R*II* 

CT2II,J-ll-2*MII,J)l«HZIN0)/WIItJI 
4 IM-4 
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10 CONTINUE 
no 9 J-lfNl 
T3 (Hit J)«( 1B»T3<M, JJ-9n3(H0f J) + 2«T3(M-2.J)+6«HRJ/11 

9 CONTINUE 
(=PRT«1.0 
GO TO 21 

20 IM«2 
C 
C 
C DU FORT FRANK METHOD 
C 
C 

Z1"HZ(N0-1)**2 
Z2»HZ(N0)«*2 
Z12-HZtNO-l)*HZ(NO)»(HZJNO)«-HZtNO-H ) 
Z21-Z2-Z1 
C1-WU,1 )*Zl/Z12+2/HR2 
C2=l/HR2-V(lfl)/(2»HR> 
C3=1/HR2+V(1,11/(2*HR) 
C4=WI1,lJ»Z2/Z12-2/HR2 
C5=W(l,l)«tZ2-Zl)/Z12 
T3(l,l)=(C2*T2(2,l)+C3*T2(2,Nn*(2/HR2)#T2(2,N/2*l)*C4*Tl(l, I I-

CC5»T2tl,1)-2«W(1.1))/C1 
CO 8 J=1.NI 
T3(1,JJ=T3«1,1J 
DO 8 1=2,H 
AH1=W(Î,J5*21/Z12 
AH2=WU,J)«Z2/Z12 
AW3=Wf Î ,J)*(Z2-ZU/Z12 
AU«Utl,J)/(2«HR) 
AV"V(I ,J)/ (2*R I I  )*HCI 
Al-AWl+ARl I)<-BR(I) 
A2»CB(I)-AU 
A3»DR(I)+AU 
A4=BR(I)-AV 
A5»BR(I)«-AV 
A6«AW2-ARII)-BRII) 
A7»A2*T2(I+1,JJ+A3*T2(I-l,JI+A6»T1II,J )-2»W(11J) 
IFtJ.EO.l.OR.J.EQ.NI) GO TO 1 
A8-A4*T2I I  ,J4-1)+A5*T2( IfJ-H 
GO TO 30 

1 IM-1 
IFiJ.EO.U A8-(A44-A5)«T2(I,J + 1I 
IF(J.EO.NH A8-IA4+A5I *T2(I,J-ll 

30 IM-l 
T3(I,J)-(A7tA8-AH3«T2II,JIl/Al 

8 CONTINUE 
DO 7 J=1,NI 
T3(MïfJ)" (18*T3(M,J»-9*T3(MD,JI+2*T3(M-2,JI*6*HRI/11 

7 CONTINUE 
DO 22 J«1,NI 
DO 22 I«1,MI 
ZT(I,J)»IZ1»T3II,J>-Z2*T1(I,J)+22I»T2JÎ«JJI/Z12 

22 CONTINUE 
CALL HONGAVtZTiERRT.R) 

21 IM"1 
RETURN 
END 
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SUBROUTINE HONGS ( S, VO.T.RA, AVS,8VS,CVS,PVS,ERRS,NS,SS,CITA, Z4, ZB, 
CZC,RI 
DIMENSION S(21,21),SS(21,Zl)rV0(21,21l, T( 21,21) , AVS( 21>, 

1BVS(211,CVSI 21),PVS(21 ),TRA121,21),ZA(211,Z8(21),ZC(21),RI21», 
2CITA(21),OVO(21,21),OVOI21,21),OSJ21,2U,QSI2l,21),VHI(3),SHI(3l 
COMMON HR,HR2,HC,HC2,OK,OMEG 
COMMON M,N,liI,NI,MO,NO 
NS = 1 
00 10 J-2,N 
00 LO 1=2,M 
TRA( I,J )=RA«HR2»(C0S(CITAIJ) J«(TtI,J4-l)-T( I,J-H )/(2»R(n»HC)+SIN« 

CCTTAtJ)J»(TtI+l,J»-T(I-i,J})/(2*HR))•(-!) 
10 CONTINUE 
14 IM=1 

no 17 J»2,N 
K«0 
VMICl J-0.0 

20 K=K+1 
VO(MI,J)«VMnK) 
DO 9 1=2,M 
OVOt I,J)-TRA(I,J)-ZBtI )»(VO(I ,J<-l)<-VOtI,J-l) I 
IF(I.EQ.H) DVO(I,J)»OVO(M,J)-CVS{H)«VO(MI,J» 

9 CONTINUE 
QVO(2,J)=0VD(2,J»/8VS(2J 
00 8 1=3,M 

8 QVO( I, JI-{OVO{ I, JJ-AVS III*I)VU(I-1,JI l/(8VSI II-AVS(I)*PVS( III) 
V0(H,J)«0V0{M,JJ 
DO 4 II-2,MD 
I=MI-II 

4 VOII,J>«QVOtI,J)-PVS a)*V0tI+l,J> 
DO 3 I"2,H 
0S(I,J>«C-l)»iZB(n»(SS( I, J-1»*SS( I,J<-1) ll+HR2*V0II,JI 
IP(I.EQ.21 GO TO 2 
QS<I,J)»lOSt I, JJ-AVS (I ) »QSÎÎ-l,JÎÎ/iSVS!n-AVS(n'*PVS<I-ll» 

2 QS<2,J)=DS(2,J)/BVS(2) 
3 CONTINUE 

n$(MI,J: = (-l)*(Z8(MII* (SS(MI,J-U«-SS(M1,J+IJ )»+HR2«V0(MI,J) 

OviN.t ,J)=(OS(MI,J)-AVSXMl)»QS(MtJ))/(BVS(MI)-AVS(Ml>»PVS(M)l 
S:':iK) = QS(Ml,J) 
If (K-2) 50,;;i,52 

50 VHI(2)"-100.0 
GO TO 20 

51 VMI (3)«100»SHI (1)/(SHI (21-SMI II) ) 
GO TO 20 

52 SS(Ht,J)»SKIIK) 
DO 18 II'1,M0 
I-MI-II 

18 SS(I,JI«QSII,J)-PVS(I)*SSII+1,J> 
17 CONTINUE 

SD=0.0 
SUM-O.O 
DO 15 1=1,MI 
00 15 J=1,NI 
SSO=SSII,J)-S(I,J> 
SD=SO+ABS(SSO) 
SUM'SUMt-ABSC SS(1,J) ) 

15 CONTINUE 
IFCSUM.EO.O.OI SUM-0.0000001 
ERRS-SO/SUM 
IF(ERRS.LT.OK) GO TO 16 
00 78 J«2, N 
00 78 1=2,MI 
OI-OMEG*(SS(I,JI-S(I,JI) 
SIX,J)-S(I,J»+OI 

78 CONTINUE 
7 N$"NS*1 

GO TO 14 
16 IX.2 

RETURN 
END 
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SUBROUTINE HONGUVI S,U« V,R) 
OIHFNSION 5(21,21I,UI21,21I,V(21,21I,".(21I 
COMMON HR,MR2,HCtHC2,OK,OHEG 
common M,N.HI,NI,M0.ND 
DO 10 1=2,M 
BH6»R(T)«HC*6 
qH12»R(Il*HC*12 
UtI,l)-l8»SCI,2)-SLI»3))/RH6 
U(I,2)=(-S(I,2> + 8«S(I, 3I-S(I,4)I/RH12 
Ut I,Nn-'(S ;i fN0!-8«S(I ,N) )/RH6 
U( I,N )'( Si !,N-2>-8»S(I ,N0)+$( I,N) )/RH12 
DO 1.0 j = NO 
U( I, J) = t S( Ï, J-2)-8«S(I ,J-l i *^8*S(I,J«l )-S(If J+2)>/R^12 

10 CONTIMJC 
HRIZ'HR̂ IZ 
00 9 J-2,N 
V(2,J>«{10»S(2.J»-18*S(3,J)+6#SI4,J)-S(5,J);/HR12 
VIM,M-3,J)-6*S(M-2,J)+18*S(M-1,J)-10*SIM,J*-3#S(M+1,J))/HR12 
00 9 1-3,MO 
V(I,JJ-LSTI+2,J>-8»S(I+l ,J)+8«STI-L,JJ-S(I-2TJ>>/HR12 

9 CONTINUE 
V(l ,L)-(8*S(2,N/2+l )-S13,N/2+1);/(&*HRI*l-l ) 
DO 8 J-1,NI 
UD.JI-O.O 

8 VT1,J)«V(1,1) 
DO 7 I«2,HI 
VTL,L)«0.0 

7 V(I,NI)"0.0 
RETURN 
END 
SUBROUTINE H0NGNU(T1,T2,T3,M«NU1,NU2,NU12,!!I,AVEWT,AVGZW,AVGBT, 

CENU,ABOT,HZ,R) 
DIMENSION T1(21,21),T2(21,21),T3(21,21),W(21,21),GZW(Z1,21),HZ(150 

D.WT121.21),OWT(21,21),GT(21),NU1(150),NU2(150),NU12(150),R(21) 
COMMON HR,HR2,HC,HC2,0K,0MEG 
COMMON M,N,MI,NI,MN,NO 
REAL NUX,NU2.NU12,NU0 

PI«3.1415927 
NU0=4.364 
11=111-1 
AVEHT-0.0 
DZl»HZtXII-lî»*2 
DZ2'HZ(III)^^2 
0Z12-HZJ  in - ) . )*Hzmi)  
0Z22=HZIII R: «TLZ(III-l ) 
DO 20 J«1,NI 
00 20 I"1,MI 
W T ! I F I , J ) » T 2 C I , J )  
GZHTI,J)-(T3(I,J)»DZl -THI,J)»OZ2-T2lI ,J)»(OZl -OZ2))»WLI,J)/(OZ12» 

CDZ22) 
20 CONTINUE 

CALL HCNGAV(WT,AVGBT,R) 
CALL H0N6AV(GZM,AVGZW,R) 
SWT-O.O 
SWT.SWT+T2(MI,1)*T2(MI,NI) 
00 19 J'2,N, 2 

19 SWT-SWT+T2(HI,J)«4 
00 18 J>3,ND,2 

18 SWT-SMT+T2IMI,J)*2 
AVEHT-SWT«HC/T J*PI) 
DO 17 J«1,NI 
DO 17 I«1,MI 

17 DWT(I.JI"!AVEWT-T2(I,J))#WII,J) 
CALL HONGAVCDWT.ABDT.R) 
NUL(IN-2/AVEHT 
NU2{ in-(2+AVCZW)/AB0T 
NU 121 N)-INUl(N) + NU2( 11)1/2 
IFDI.60.11 GO TO 22 
ENU-(NU1(II)-NUl(II-l)>/NUl(II) 
ENU>ABS(ENU) 
GO TO 23 

22 ENU-1.0 
23 IM-1 

RETURN 
END 
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SUBROUTINE HONGAVJEtAVGtRJ 
DIMENSION EI(21),E(21,21>,R(21> 
COMMON HR,HR2,HCfHC2.0K,OMEG 
CCMMCN M,N,MI,NI,MD»ND 
PT ̂ 3.1415927 
nn 7 1=1,Ml 
rin)=F(l,i)frE(i,Ni) 
n' 6 J=2,N,2 

6  U (  I )  =  E I ( I ) * E T  
ro 5 J=3,N0,2 

? rin>=Ein)vE« i,j)«2 
FL (I)=HC»EN 11/3 

7 CONTINUE 
SE=0.0 
Se = SE+EI H»*R( ll+EIIMI 
DO 4 I«2,M,2 

4  S E = S E + E i n  ) * R (  I M V  
00 3 I*3fHD,2 

3 SE»SE+EI(I)*RtI)*2 
AVG-HR»SE*2/i3»PIl 
RETURN 
END 
SUBROUTINE HONGMXI111JJtHAXTStDErST) 
COMMON HP,HR2,HC,HC2,0K,0MEG 
COMMON M,N,HI,NI,MO,ND 
REAL MAXST.MAXTS.MINST.MINTS,0E(10J,STt21,2U 
MINST-0.0 
HAXST=0.0 
00 I J=1,NI 
DO I I«1,MI 
SC=ST(I,J) 
IFCMAXST.LT. SO II-I 
IF(MAXST.LT.SCI JJ-J 
MAXST»AHAXlIMAXST,STir,JI I 
HINST«ANIN1(MINST,SC) 

1 CONTINUE 
MAXTS-HAXST 
MI NTS-MI NST 
MAXST-MAXST-MINST 
EH=0.0 
NJ-1 

7 IM-2 
IFIMAXST.LT.O.OOOOl.OR.MAXST.GT.lOO.OI GO TO 50 
TF(IAXST.GE.0.00001.AND.MAXST.tT.0.00011 08=0.0000I 
11^ ( MAXST.GE.0.0001.AND .MAXST.LT.0.001) 08=0.0001 
ir(ii.\XST.GE.O. 001.AND. MAXST.LT.0.01) DB-0.001 
IF(M<\XST.GE.0.O1.AND.MAXST.LT.O. 1) 08=0.01 
IFIH&XST.GE.O.l.ANO.MAXST.LT.1.0) 08=0.1 
IFlMAXST.GE.l.O.ANO.MAXST.LT.lO.O) D8>1.0 
IF(MAXST.GE.10.D.AND.MAXST.LE.100.0) DB-10.0 
DA-DB 
DO 4 I«2,9 
0M=AMIN1(MAXST,0A| 
IF(OH.EO.OA) 00»DM 
DA=DB«I 

4 CONTINUE 
EH«00»EH 
IFINJ.EC.2) GO TO 8 
MAXST-MAXST-OO 
NJ«NJ*1 
GO TO T 

8 ÛC-EH/10.0 
00 5 J-1,10 
OE!J)"0C»J 

5 CONTINUE 
50 IM-l 

URITE(6,100) MAXTS,II,JJ 
100 FORMAT('0',20X,'MAXIMUM VALUE IS•,E18.6,5X,MN I-0',I5,' IN J-

CO»,IS) 
RETURN 
END 
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SUBROUTINE HONGCUCF.F) 
CCMMCN HR,HR2.HC,HC2,OK,OKEG 
CUNHON n,N,MI,NI*ND,NO 

DIMENSION CF{10),Ft21.21l,0F(21l,CJ(21>,PF(21!,RI(21lifJ( 211*01(21 
1) 
01 -1.5 
0J»9.0 
DO 6 K»l,10 
WRITEt6.120J K,CF<K) 
DO 81 I«1,MI 
JK-l 
IF(I.GE.2) GO TO 93 
WPITE(6,105» 

93 DF(1J«CF(K)-F(1,1) 
00 83 J»2.NI 
DFtJ)«CFtK)-F(I,J) 
EE=DF W)*OF( J-1) 
IF(EE.GT.O.O) GO TO 83 
eF=DF(J-l)/(F( I,J|-F(I,J - in 
CJ( JK)«iJ-l+EF 
JK-JK+1 

83 CONTINUE 
IF(JK.EQ.l) GO TO 81 
JKD*JK-1 
QI(I)-OI*(I-l) 
WRITE(6, 10 71 I ,QI(I) ,(CJ{JK),JK<il,JKOI 

81 continue 
00 71 J»1,NI 
IK-1 
IFCJ.GE.2) GO TO 74 
WRITE(6,108) 

74 PFtlJ«CFtK»-F(l,JJ 
00 72 1-2,HI 
PF(I)«CF«K)-FII,J) 
OF,PF(n*PF( I-l) 
IFtOF.GT.O.O) GO TO 72 
RF»PF(I-1)/IF(I,J)-F(I-1,J)I 
RI(IK)=I-1+RF 
IK-IK+1 

72 CONTINUE 
IF(IK.EQ.l) GO TO 71 
1 KO"IK-1 
PJ(J)=0J*IJ-1I 
WRITEC6,107) J,PJ(J),(RI(IK),IK>lfIKD) 

71 CONTINUE 
6 CONTINUE 

105 FORMAT CO',30X,«COORDINATE IN R-DIRECTtON*,20X«•IN CITA DIRECTION' 
C> 

107 FORMAT!' •,30X,15,5X,F10.4,20X,4F10.4) 
108 FORMATCO" ,30X,'COORDINATE IN CITA DIRECTION', 20X,'R-DIRECTION ' ) 
120 FORMATCO',20X,'NO OF CONSTANT LINE • ,10X,ISvlOX,• CONSTANT VALUE', 

C10X,F20.5) 
RETURN 
END 
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APPENDIX B. 

NUMERICAL RESULTS FOR CHAPTER II 

R a  = 0  
a 10- 10 5 X 10 

z X 10" Nu Z X 10' Nu z X 10' Nu z X 10" Nu 

0.3355 

0.6881 

1.059 

1.858 

2.741 

3.718 

4.798 

5.990 

7.308 

8.765 

10.38 

12.15 

14.12 

16.29 

18.70 

21.35 

24.28 

27.53 

31.11 

35.07 

39.44 

44.28 

49.63 

55.53 

62.06 

69.28 

77.25 

86.07 

47.65 

32.07 

25.21 

18.69 

15.63 

13.76 

12.45 

11.46 

10.67 

10.01 

9.450 

8.963 

8.533 

8.151 

7.807 

7.494 

7.209 

6.948 

6.708 

6.486 

6.281 

6.090 

5.913 

5.748 

5.594 

5.451 

5.318 

5.193 

0.3355 

0.7062 

1.116 

1.569 

2.069 

2.622 

3.234 

3.909 

4.656 

5.481 

7.400 

9.745 

12.61 

16.11 

20.38 

25.60 

31.97 

39.64 

47.45 

55.12 

62.63 

70.02 

77.30 

84.47 

91.56 

98.57 

105.5 

112.4 

47.65 

31.48 

24.46 

20.39 

17.82 

16.02 

14.64 

13.55 

12.65 

11.90 

10.68 

9.714 

8.924 

8.258 

7.687 

7.191 

6.757 

6.382 

6.071 

5.808 

5.593 

5.419 

5.276 

5.156 

5.055 

4.971 

4.901 

4.843 

0.3355 

0.7062 

1.116 

1.569 

2.069 

2.622 

3.909 

5.481 

7.400 

9.745 

12.61 

15.77 

18.29 

20.40 

22.27 

23.99 

25.61 

27.15 

28.62 

30.04 

31.42 

32.77 

34.09 

35.40 

36.68 

37.95 

39.21 

40.47 

47.65 

31.48 

24.46 

20.39 

17.82 

16.02 

13.55 

11.90 

10.68 

9.723 

8.942 

8.393 

7.978 

7.627 

7.377 

7.203 

7.086 

6.999 

6.929 

6.871 

6.822 

6.780 

6.744 

6.713 

6.686 

6.662 

6.642 

6.625 

0.3355 

0.7062 

1.116 

1.569 

2.069 

2.622 

3.234 

4.656 

6.062 

7.110 

7.997 

8.792 

9.528 

10.22 

10.88 

11.20 

11.83 

12.44 

13.03 

13.91 

14.77 

15.61 

16.45 

17.29 

18.68 

19.79 

20.64 

21.49 

47.65 

31.48 

24.46 

20.39 

17.82 

16.03 

14.64 

12.70 

11.67 

10.83 

10.32 

10.01 

9.794 

9.627 

9.492 

9.433 

9.330 

9.243 

9.169 

9.077 

9.004 

8.944 

8.896 

8.857 

8.807 

8.777 

8.760 

8.745 
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* 
R a  = 0  
a 10̂  10̂  5 X 10̂  

z X 10̂  Nu z X 10̂  Nu z X 10̂  Nu z X 10̂  Nu 

95.81 5.077 119.2 4.795 41.72 6.610 22.36 8.733 

106.6 4.969 126.0 4.756 42.96 6.598 22.94 8.726 

118.5 4.869 132.8 4.727 44.20 6.588 24.13 8.715 

131.2 4.776 139.5 4.706 45.44 6.580 25.05 8.709 

146.1 4.690 146.2 4.693 46.68 6.574 25.98 8.704 

162.2 4.612 47.92 6.570 26.94 8.700 

178.0 4.540 49.16 6.568 29.72 8.694 

199.6 4.476 49.79 6.567 

221.2 4.418 

245.2 4.367 * 

Last value of Nu corresponds to fully developed condition defined 
in Eq. (2-56). 
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Ra" = 10̂  ,̂ 5 
5 X 10 

5 ,̂ 6 
a 

= 10̂  
3 X 10 5 X 10 10 

z X 10̂  Nu z X 10̂  Nu z X 10̂  Nu z X 10̂  Nu 

0.3355 47.65 0.335 47.65 0.3355 47.65 0,3355 47.65 

0.7062 31.48 0.7062 31.48 0.7062 31.48 0.7062 31.48 

1.116 24.46 1.116 24.46 1.116 24.54 1.116 26.01 

1.569 20.39 1.569 20.54 1.547 21.39 1.322 23.02 

2.069 17.83 2.002 18.64 1.801 19.51 1.466 20.95 

2.622 16.04 2.304 17.32 1.994 18,00 1,588 19.91 

3.234 14.80 2.544 16.15 2.161 17.15 1.701 19.48 

3.780 14.02 2.755 15.44 2.315 16.75 1,805 19.05 

4.233 13.34 2.948 15.05 2.458 16.41 1,905 18.75 

4.605 12.72 3.129 14.75 2.593 16.15 2.000 18.46 

5.270 11.98 3.464 14.31 2.848 15.71 2.181 18.04 

5.855 11.58 3.775 13,98 3.088 15.39 2.354 17.72 

6.393 11.30 4.070 13.72 3.317 15.14 2.522 17.48 

6.896 11,08 4.353 13.52 3.539 14,95 2.686 17.28 

7.376 10.91 4.628 13.36 3.756 14.79 2.847 17.12 

7.837 10.77 4.896 13.23 4.180 14,55 3.165 16.81 

8.285 10.65 5.159 13.12 4.492 14.41 3,401 16.72 

8.721 10,55 5.549 12.98 4.803 14,30 3.638 16.59 

9.149 10,47 5.934 12.87 5.320 14.14 4.033 16.41 

9.571 10,40 6.316 12.78 5.839 14.02 4.435 16.26 

10.22 10.31 6.698 12.70 6.368 13.91 4.847 16.12 

10.81 10.24 7.206 12.62 6.910 13,82 5.271 16.00 
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* 
Ra 
a 

= 10̂  3 X 10^ 5 X 10 
5 

10* 

z X 10^ Nu z X 10̂  Nu z X 10̂  Nu 2 X 10^ Nu 

11.43 10.18 7.849 12.52 8.046 13.67 5.710 15.89 

12.04 10.13 8.505 12.45 8.646 13.60 6.165 15.79 

12.65 10.09 9.178 12.39 9.272 13.53 7.133 15.61 

13.26 10.06 9.872 12.33 10.62 13.41 8.199 15.43 

13.87 10.03 11.34 12.23 12.12 13.30 9.378 15.27 

14.70 9.993 12.95 12.14 13.82 13.20 10.58 15.17 

15.76 9.959 14.74 12.06 17.41 13.05 11.14 15.03 

16.85 9.930 16.77 11.99 18.67 13.01 14.86 14.89 

17.98 9.906 19.09 11.93 

20.39 9.867 20.49 11.89 

24.38 9.854 
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APPENDIX C 

DERIVATION OF DIMENSIONLESS GROUPS FOR CORE 

AND BOUNDARY LAYER EQUATIONS 

The derivation of the present non-dimensional groups is based on 

similar derivations from Ref. 130 in which a natural convection boundary 

layer along a uniformly heated plate has been considered to obtain the 

characteristic variables. Therefore, the derivation will start from a 

study of steady boundary layer laminar flow along a vertical plate heated 

to a uniform temperature T̂ . 

The dimensional equations that govern the natural laminar convection 

along a vertical plate, with no dissipation, are given as follows: 

The X-axis is parallel to the plate, and the origin is at the bottom edge. 

The Y axis is perpendicular to the plate, with the origin at the plate 

surface. The velocities U and V are in the X and Y direction velocity 

components, respectively. The boundary conditions are as follows: 

èU ̂  dV 
M 

0 

(C-l) 

Y = 0 ,  U = V = 0 ,  T = T ^  ( u n i f o r m  w a l l  t e m p e r a t u r e )  (C-2) 

Y = 00, u = V = 0, T=T̂  
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Boundary Layer Region 

The following dlmensionless variables are introduced; 

X 
X 
L 

JD_ 
U ' 

V 
(C-3) u V 

V 
c c 

T - T 03 

The symbol AT vill be used to represent the temperature difference 

- T»-

The following hypotheses can be made about the thermal boundary 

layer; 

(1) Both terms in the continuity equation are of the same order of 

magnitude. 

(2) The buoyancy and viscous terms in the X-momentum equation are of the 

same order of magnitude. 

(3) The X and Y convection terms and the conduction terms in the energy 

equation are of the same order of magnitude. 

These hypotheses lead to the following relationships: 

c Ç 
L = A, (C-4) 
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U 
c 

Solving Eqs. (C-4) simultaneously yields: 

' (Gr̂ Pr)!/» 

Gr \̂l/2 

c pL VPr y =ï(ir) (C-5) 

Gr,-1/4 

V 
C r-- \p^-

It is noted that Eqs. (C-5) are similar to Eqs. (3-22), from which one 

obtains the dimensionless variables. 

Hydrodynamic Boundary Layer 

The dimensionless variables for hydraulic boundary layer are defined 

as follows: 
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The following hypotheses can be made about the viscous boundary layer: 

(1) Both terms in the continuity equation are of the same order of 

magnitude. 

(2) The viscous term and inertia term in the X-momentum equation are of 

the same order of magnitude. 

(3) The characteristic velocity in the hydrodynamlc boundary layer, 

is the same order of magnitude as Û . 

These hypotheses lead to the following relationships: 

(C-7) 

U, 
h 
L 

Solving Eqs. (C-7) simultaneously yields: 

1/4 

V, 
h 

(C-8) 

1 / 2  

U, 
h 

From Eqs. (C-5) and (C-7), one obtains 
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= (Pr)l/2 (C-9) 

For large Prandtl number flow, one therefore concludes that the hydro-

dynamic boundary layer is much thicker than the thermal boundary layer and 

can be neglected. 

Core Region 

The characteristic velocity in the core region can be calculated by 

equating the mass flow in the thermal boundary layer Ô to the mass flow 

+ + 
down in the core, aU sin x. Therefore, U is obtained and the result is: 

' c ' c 

+ Li 3 1/4 
U = — (Gr/Pr ) (C-10) 
c ap 

Equation (C-10) was employed to obtain the dimensionless Eq. (3-14) in the 

core region. 
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APPENDIX D. 

COMPUTER PROGRAM FOR CHAPTER III 



www.manaraa.com

216 

c 
c 
c 
c COMPUTER PROGRAM FOR CHAPER I I I  
C COMBINED FORCED AND FREE LAMINAR CONVECTION WITH TEMPERATURE DEPENDENT 
C VISCOSITY IN HORIZONTAL TUBES 
C 

C HONGH SUBROUTINE FOR SOLVING BOUNDARY LAYER EQUATION AND HEAT TRANSFER 
C 

REAL K1«K2,K3,K4 
DIMENSION X( 501) ,0xj501) jEXt 501» ,  X3( 501) ,FX(501)fYI5011 

99 REAOt5flOO»ENO"200) M,N,6E.RA 
MI»M+1 
PI=3.1415927 
HX-PI/M 
MD=M-1 
CALL HONGl (N.BE.Al ) 
WRITE(6,105) A1,M 
A1»A8S(A1) 
X(l)-0.0 
00 10 I»2, MI 

10 X(I)-X(I-1)<HX 
Y(l)-(3.0/(2*Al»)**l1.0/4.0) 
Y{2)«Y(1) 
DO 18 I-2.H 
II-I+l 
AX1»X(I) 
AY1=Y{I) 
K1.1.0/(2*Al*SIN{AXl)«AYl**3l-ICOS(AXl)/SINIAXl))*AYl/3 
AX2=X(1)+HX/2 
AY2-Y(Ii+HX»Kl/2 
K2"1.0/(2fAlt>SIN(AX2)»AY2»*3)-tCOS(AX2)/SIN(AX2))»AY2/3 
Y(II)«Y{IJ+HX*K2 

18 CONTINUE 
WRITE<6, 1031 

WRITE(6,10i) (Yd),1.1,MI) 
DO 19 I»1,MI 

19 eXlIÎ=1.0/Y{IÎ 
SUMX»EX(1)+EX(MI) 
DO 20 I«2,M,2 • 

20 SUHX«SUMX+EX(I)»4 
DO 21 1=3,MD,2 

21 SUMX-SUKXt exd )*2 
AVG=HX»SUM.X/3.0 
ANU«I3.0»AVG)/PI 
WRITE(6,10?) AVG,A1 
WRITE(6,104) ANU.BE 
GO TO 99 

100 FCRMAT(2I5,F10.5,F10.1) 
101 FORMATC ' ,10E12.5) 
102 FORMAT! '0 '  ,  • AVERAGE» ,5X,F20.6. 5X, • A1 • ,F20.6) 
103 PORMATCO' , 'DEL FUNCTICN») 
104 FORMAT* '0 '  , 'COEFFICENT OF NUSSELT NUMBER',F20.6t9*t •oéwiî i .éâ NUMBER 

C'FIO.3) 
105 FORMAT i«0« ,• Al« ,F15. 6, 5X, • SIZE• ,  I  5 ) 
200 STOP 

END 
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SUBROUTINE HONGl<NtBE*Al) 
C SOLUTION OF SIMULTANEOUS ALGEBRAIC EQUATIONS BY GAUSSIAN ELININATI 
C ON. N IS THE NUMBER OF EQUATIONS. AII,JI IS THE COEFFICIENT NATR 
C IX OF THE EQUATIONS. I IS THE EQUATION NO., J IS THE COEF. NUMBER 

DIMENSION AI20,21),BI20,21},X(20i 
C-INPUT—NUMBER OF EQUATIONS 

H«N+1 
C-INPUT—EQUATION COEFFICIENTS 

AA»I8E*3.01/2.0 
All, l)xAA 
A(l,2)«1.0 
00 31 J-3,N 

31 All ,Ji>0.0 
&(2,1)>0.0 
AI 2,21-AA 
AI2,3)-2.0 
00 32 J-4, N 

32 AI 2, JI-O.O 
A(3,1)»-AA 
AI 3,21-0.0 
AI3,3)»AA 
AI 3,41-3.0 
00 33 J»5,N 

33 AI 3,JI-0.0 
AI4,11-0.0 
AI4,2)—AA 
AI4,3)-0.0 
A(4,4)>AA 
AI4,5J' ' . .0 
OO 34 .J«6, N 

34 At4,J) '0.0 
At5,l)-0.0 
AI 5,2>-0.0 
AI 5,3)—AA 
A( 5,41-0.0 
A(5,5J-AA 
A;5,61-5.0 
DO 35 J-7,N 

35 AI5,J»-0.0 
AI6,ll-0.0 
AI6f?)-0.0 
AI6,3J-0.0 
A ( 6 , 4 A A  
A(('«UI-0.0 
At <>, fi )-AA 
Al6,7)-6.0 
AI6,a)>0.0 
OO 36 J-1,4 

36 AI7,J>-0.0 
At7,5)—AA 
A[7,6)-0.0 
At7,7J-AA 
A(7,8)-7.0 
DO 37 J-1,N 

37 A{8,«iî^2.0 
A(l,9)—1.0 
A(2,9)-1.5 
AI3,91-0.0 
A14,9)—0.5 
DO 38 1-5,N 

38 A(1,91-0.0 
C SAVE ORIGINAL MATRIX FOR LATER OUTPUT 

CO 17 1-1,N 
00 17 J-1,M 

17 BCItJI-AdtJI 
NN-N-1 

C FIND LARGESI PIVOT ELEMENT 
OO 1 K-1,NN 
NAXA-AeS(A(K,KII 
KK-K*1 
II-K 
00 2 I-KK,N 
AA-ABS(A<I,Kn 
IFIMAXA-AA)3,2,2 
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3 f 'AXA=AA 
n»i 

2 CONTINUE 
ir(I I-K15, 15,5 

C rXCllANGE ROWS TO GET LARGEST ELEMENT TO PIVOT POSITION, IF NEEDED 
5 nn /, J  =  K , M  

T C M P = A ( n ,  J )  
A I  I I , J ) = A { K , J )  

4  A [ K , J ) = T c M P  
C COMPUTE NEW COEFFICIENTS 

15 00 6 I=KK,N 
ARAT»A<I,K)/AIK,K) 
0 0  6  J = K , H  
A ( I , J ) = A {I,J)-ARAT*A{K,J) 

6 CONTINUE 
1 CONTINUE 

C COMPUTE VARIABLES (SOLUTIONS) 
X ( N )=A(N,M)/A(N,N) 
00 8 MS«1,NN 
I=N-MS 
SUK=0.0 
JJ-I+1 
CO 9 J=JJ,N 

9  S U M = S U M + A (  I ,  J )  » X (  J )  
X(I:=IA(I,M)-SUM)/A(I,I) 

8 CONTINUE 
C-OUTPUT—ORIGINAL EQUATIONS 

WP,1TE(6,102) 
IF(N-12)20,20,21 

20 00 12 J-1,N 
12 KRITE(6,103)J ,(B(I,J),I-1,N) 

V:Rn E(6,104) (B(I,MU1-1,NJ 
GO TO 50 

21 DO 13 J=l, N 
13 WRITE(6,103)J ,(B(I,J),I- l ,12) 

WRITE(6,104)(BII,MI,1=1,12) 
no 14 J=1,N 

14 WRITE(6,103)J ,(BtI,J),1-13,N) 
WRITE{6,104)(B(I,J1,I«13,N> 

50 WR1TE(6,105) 
C COMPUTE VALUE OF EACH EQUATION 

no 18 1=1, N 
SUt'=0,0 
CO 19 J=1,N 

19 SUM=SUH»3tI,J)»XCJ) 
C-OUrpUT—SOLUTIONS, COMPUTED VALUE OF EQUATION, 6 ACTUAL VALUE OF EQUAT 

WRITE(6,106)I,X(I},I ,SUM,B(I,M) 
18 CONTINUE 

Al-Xt 1)/10*X{2)/48»X(3 )/140+Xt A)/320+X(5J/630<-X(6)/120«-X17)/1848+ 
CX(8)/28^0 

102 FOPMATt'!•,10X,'THE SYSTEM OF SIMULTANEOUS ALGEBRAIC EQUATIONS',//  
Î , '  THE COEFFICIENTS',//) 

103 FORMAT!' •  ,  '  X',I  2, 5X,12F10.5 ) 
104 FORMAT! '  • ,  • C ,  7X, 12F1 C. 5,//) 
105 F O R M A T C l »  ,10X,'THE SOLUTION OF THE SYSTEM OF SIMULTANEOUS ALGEBRA 

lie EQUATIONS',// ,39X,'EQUATION «•,10X,•COMPUTED VALUE',6X,•ACTUAL 
2VALUE',//) 

106 F0RMAT("0',10X,'X',I2, '  «'»F13.7,16X,I2,13X,F13.7,4X,F13.7) 
RETURN 

• END 
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APPENDIX E. NON-NEWTONIAN FLUID EFFECTS ON MIXED 

CONVECTION HEAT TRANSFER IN TUBES 

All those fluids for which the "flow curve" (t  ̂versus du/dy) is not 

linear through the origin at a given temperature and pressure are said to 

be non-Newtonian. The increasing awareness during recent years of the impor­

tance of manufacturing and processing materials, such as plastics, paints, 

polymers, etc., which exhibit anomalous rheological behavior has resulted 

in numerous studies of non-Newtonian fluids. Analytical investigations 

have been presented by DeYoung and Scheele [47], Chen et al. [l3l], and 

Sylvester and Rosen [132]. A review of laminar flow heat transfer in tubes 

with non-Newtonian fluids is given by Skelland [133]. 

Emphasis in this appendix is given to power law fluids whose shear 

stress and shear rate is defined as follows: 

V = fl""' t 

where n is the flow behavior index, which ranges from unity toward zero for 

pseudoplastic fluids, and K is the consistency index. For the special case 

of n = 1, Eq. (E-1) reduces to the standard relation for a Newtonian fluid. 

The majority of non-Newtonian materials obey Eq. (E-1) which is a relatively 

simple constitutive equation to use in mathematical analysis. In general, 

the Nusselt number increases with n. 

It has been recognized that boundary layer analysis can be employed to 

study pseudoplastic fluids in laminar, fully developed tube flow. As indi­

cated in Chapter III, a somewhat similar relationship of Nu versus Ra exists 

between vertical flat plate natural convection and horizontal tube flow. It 
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is therefore expected that this similarity may still hold for non-Newtonian 

fluid flow. 

Employing an integral method for laminar natural convection heat trans -

fer between a vertical plate and a power law fluid with high Prandtl num­

ber, Tien [134] and Dale and Emery [135] reported that the average Nusselt 

number could be expressed as follows: 

_1 

Nu = C(n)[Gr̂ Pr̂ ]̂ °̂  ̂ (E-2) 

The boundary layer thickness along the vertical plate was found to be 

1 n 
, ' \3rri-l 3n4-l 

 ̂= M(n) /—I (x+) (E-3) 
Pr̂  

where C in Eq. (E-2) and M in Eq, (E-3) are functions of the index n, Ô and 

x̂  are dimensionless boundary layer thicknesses, and axial distance is de­

fined as follows: 

;.+ ô + x 
« • I • == = ï 

V V 
Gr and Pr are Grashof and Prandtl numbers, defined in Eqs. (E-14) and 

(E-15) for non-Newtonian fluids. It is not surprising that Eq. (E-2) agrees 

with heat transfer results for Newtonian fluid flow with n = 1, Nu = CRâ ^̂ . 

Formulation of the problem 

Consideration is given to steady, laminar, fully developed, combined 

forced and free convection of a power law fluid in horizontal tubes. Ne­

glecting viscous dissipation, axial conduction, and property variation ex­

cept for density, one can derive the governing partial differential equation 

by following the same procedure as shown in Chapter III. Using the same 
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coordinates for boundary layer and core regions as used in Chapter III, one 

obtains the field equations as follows; 

Boundary layer region 

Secondary velocity momentum equation: 

ôy' 

Energy equation 

Ù 

ôy' 

Continuity equation 

H + SPP(T - I^) sin e (E-4) 

= (2-5) 

The following dimensionless variables are introduced 

X Y 
= I ' y = Â 

U V 
" = F" ' = v" 

c c 

T - T 
0 = —̂  (E-7) 

The symbol AT will be used to represent the temperature difference 

\ - ̂ b-

The following hypotheses can be made to derive the reference parameters, 

A, Û , and in the dimensionless groups: 

(1) Both terms in the continuity equation are of the same order of 

magnitude, hence 

U V 
f = f (B-8) 
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(2) The buoyancy term and viscous term are of the same order of 

magnitude which leads to 

agisr = - ̂  (E-9) 

(3) If the X and Y convective terms and the conduction term are the 

same order of magnitude in the energy equation, one obtains 

~  ̂ (E-10) 
pCp' 

Solving Eqs. (E-8), (E-9), and (E-10) simultaneously yields 

A = T— (E-11) 

U = (E-12) 
c a 

Vc = (E-13) 

V y 
where Gr , and Pr are Grashof and Prandtl numbers defined as follows: 

nH-2 

Gr' = (E-14) 

(f 

2(n-l) 

° (â(f)  ̂ (B-15) 

Introducing Eqs. (E-11), (E-12), and (E-13) into Eqs. (E-4), (E-5), and 

(E-6) allows the dimensionless boundary layer equations to be written as 

follows: 
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ôx ôy 
(E-16) 

1 

ĝ V3(l-n) 
Snrf-l 

 ̂ sin 8+n(̂ )  ̂
pr̂ 2(l+n) 

(E-17) 

(E-18) 

The boundary conditions are: 

y = 0, u = V = 0, 0=1 

y = 5, u = u(ô) , V = v(ô), 0 = 0̂  

where u(ô), v(ô), and 0̂  are to be determined at the boundary layer edge and 

can be obtained from solutions of core region. Since n is bounded at zero 

and unity, the left-hand side in Eq. (E-17) can be neglected for high 

Prandtl number fluids. Thus, Eq. (E-17) becomes: 

Equation (E-19) is a non-linear, second-order, ordinary differential equar 

tion and may be solved numerically. 

The governing equations in the core region can be derived from energy 

and continuity equations. Since the procedures are exactly the same as 

derivation of Newtonian fluid flow, the details of the derivation will be 

omitted. 

(E-19) 



www.manaraa.com

224 

Nusselt number 

The heat transfer coefficient can be obtained from the energy balance 

along the tube wall. For the axially uniform heat flux boundary condition, 

one obtains 

TJa 

Q = 2T,ah(̂  - tJ = 2k j 
àT 
SY dX (E-20) 

Y=0 

Using the dimensionless variables, one obtains the Nusselt number as 

follows: 

7 

Nu = 2ah 2a f Ml 
k TTA J ày|ŷ Q 

dx 

Tî I oy 
J 0 

dx 
y=0 

(E-21) 

= C(n) (cr̂ Pr"̂ )̂ ®̂  ̂

where 
ir 

C(n) = ̂  J ̂  
Sy 

dx (E-22) 
ly=0 

Since the governing equations [Eqs. (E-19) and (E-18)] are functions of 

n only, one concludes that the constant C in Eq. (E-21) is a function of n. 

It is obvious that Eq, (E-21) reduces to that for a Newtonian fluid for 

n = 1. One way to obtain the constant C in Eq. (E-21) is to solve Eq. 

(E-19) with Eq. (E-18), coupling it to the core equation by an iterative 

process. The detailed solution procedure will be similar to that described 

in Chapter III. 



www.manaraa.com

225 

APPENDIX F. 

COMPUTER PROGRAM FOR CHAPTER IV 

! 
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COMPUTER PROGRAM FOR CHAPER IV 
LAMINAR FLOW HEAT TRANSFER IN THERMAL ENTRANCE REGION OF SEMI-CIRCULAR 
TU BPS 

W: AXIAL VELOCITY 
T1,T2,T3,: THREE LEVEL OF TEMPERATURE 
HONGT: SUBROUTINE FOR ENERGY EQUQTION 

DIMENSION M(21,2I), T 1(21.21 ),  T2 (21« 21 ) .  T3( 21, 21) t  
1 Rl21),CITA:21),ZA(21),ZB(21I,ZCI21), 
2 ARf21),BR(21),CR(21),DR(21),HZ(300)rSHZt300) 
3,NU1(300),NU2(300),NU12(300) 

COMMON HR,HR2,HCfHC2»OKrOMEG 
COMMON H,N,HI,NI,MD,ND 
REAL NU1,NU2,NU12 

C 
C 
C 
C 

REAO(5,100,EN0-150) M,N,OK,OMEG,RA»EN,ENN 
C 
C RA IS RAYLEIGH NUMBER 
C 

WRIT£(6,121) M,N 
WRITE (6,122) OK.OMEG 
WRITE(6,123) EN.ENN 
HI«M+l 
MD=M-1 

NI"N+1 
ND-N-1 
N2-N/2-M 
NO-1 

NOO-5 
SZZ-0.0 
Y.-EN 
DO 17 I»l,150 
HZ ( I  )»EXP(Y) 
S2Z«SZZ»HZ(I) 
SH21IJ=SZZ 
Y=Y+ENN 

17 CONTINUE 
on 10 J«Z,NI 
00 10 I«l,  MI 
T1(I,J)«0.0 
T2(I,J)«0.0 
T3(I,J)=0.0 

10 CONTINUE 
PEAO(5,102) KMd.J) ,I-1,MI>,J>1,NI) 
hR»1.0/M 
HR2=HP*«:2 
PI=3.141^927 
HC»PI/N 
HC2«HC»»2 
CITA(l)-0.0 
DO 9 J=2,NI 

9 CITA(J)«CITA(J-1)*HC 
R(1)=0.0 
DO 8 I«2,MI 
R( I)«R( I- l  )*HR 
Z&(I)=HR/(2*R(I)) 
ZB(I l  = (HR/(HC*R(I)))**2 
ZCtI)-HRf*2/(2»R(I)»HC) 

8 CONTINUE 
ADZ'1.0 
DO 16 I-2,M 
OO 16 J-2, N 
A01-W(I,J)*R(I)*HR 
AOZ'AHINK ADZ, ADD 

16 CONTINUE 
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V.RITe(6,103) AO/. 
IM-1 
WPITf |6fn6> 
wmiFi6,no) iHzn),]>i,i5o) 
wniTF(5,i3n 
WPITF (6, lid) (SMZin tl «ItlSOl 
WRIT El 6, 139) 
WRITF 16,14 01 ( (Wd.JI, I° l ,H),J' l .NIi 
IM=2 
CO 7 I«2tM 
AR(I 1=(P(I+1)»2*R(1)+RII-1I)/(4*R(I)«HR2» 
BR(1)=1/(IR(II*HC)**2) 
C» (T ) «IRII+l l»RI 1) ) /  (2»R( n *HR2) 
DR(M=.|RII)<-R( I- l)  )/(2*RIII*HR2) 
CONTINUE 
SANZ=0.0 
KK-0 
CALL HONGAVIWtAVWfRI 
HRITE(6t>104) AVH 

20 IM=3 
CALL HONGT ITl,T2,T3«Wt ANU « AR • BR» CR« ORtNO, ERRT, HZi R t  ANU2t A VHI 
1F(N0.EQ.11 GO TO 21 
NU1(NN1«ANU 
NU2JNN)«ANU2 
N'J12tNN)»( NU1(NNI+NU2( NNI I  /Z.O 
WRITE(6,107) NN,HZ(NN),SHZ(NNI,NUllNN),N(j2(NN)fNll l2(NNt«ERRT 

21 IM=1 
TFIN0.GT.149I CO TO 99 
IF(NO.eO.NOOl GO TO 14 
NO«NO+1 
NN=NC-1 
GO TO 20 

14 IM»1 
WRITEt6.10S) NO 
WRITE(6,101» 
WRITE (6,115) ( tT3(I,J>,I '2,MI),J>l,Nn 
NOC=NOO*5 
N0=>N0+1 
NN=N0-1 
GO TO 20 

99 IM=1 

WRITE(6,141) 
DO 23 1*1,NN 
SH2D4=SHZ(I)/4.0 
WRITE (6, 142) I  ,SHZ{I ) ,  SHZ04,NU1 ( I I  tNU2( 11, NU12 ( I)  

23 CONTINUE 
100 FGRMAT{215,2F10.5,F10.1,2F5.2) 
101 FORMATI'0', 'TTT') 
1(>2 FORMAT(20A4) 
i rn FORMATCO» , 'ADZ»«,5X,E16.T) 
10', FO RM AT 1 •  0» AVER AGE VELOCITY* ,5X,E14. 5) 
lOr FORMAT I '0' , 'N0',I5,2X, 'HZ',E14.5,2X,'AHZ',E14.5,2X,'NUI',F10.4,ZX, 

<: 'NU2«,F10.4,2X,*NU12',F10.4»2X,'ERRT» ,E14.5) 
ion FOPMATCO' f 'NO» ' ,15) 
115 FORMATdOF 13.6) 
IZl FORMAT C '  ,30X,'MESH SIZE M AND N ' ,21101 
122 FORMAT!' '  ,30X,'0K AND RELAXATION FACTOR ' ,F10.6, 

CF10.21 
123 FORMAT I  '  '  ,30X,' EXP(-Y+OY*N) Y AND DY.. ' ,2F10.2) 
136 FORMAT!'0', '  MARCHING STEP HZ «) 
137 FOPMATCO', '  MARCHING LENGTH SHZ ' )  
138 FORMAT!' ' ,10E13.6) 
139 FORMAT!'0', '  AXIAL VELOCITY W ' )  
140 FORMAT!' ' ,10F13.6) 
141 FORHAT!'1', IOX,'NO',10X,'2',14X,'Z/4',12X,'N01',10X,'NU2' ,10X, 'NU 

C12') 
142 FORMAT!' ' ,  9X,I3,E16.6,E16.6,3F12.4I 
150 STOP 

END 
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7 SS2-SS2-«**T3(N,J)-T3CMD,JH 
AAT2-SS2»HC/t2«HRI 
TW«IPIfr2.0-AAT5-AAT*-A*T3-fc*T2|/*ATl 
00 9 J-l ,Nt 
T3{1,JI«TW 

9 T3(MI,JJ»TN 
DO 4 
T3(I, l l«TH 
T3(I,NU-TM 

4 CONTINUE 
IFIN0.E0.1) GO TO 23 
00 22 J-1. NI 
DO 22 I«1,HI 
2TntJ)«(Z l«TiH,J)-Z2#Tl(I,JI*Z2l»T2(t#Jl I/Z12 
wrti  ,jj-2T(i,j)»wti , j» 
own I,J)-( TM-T2n»J) 

22 CONTINUE 
CALL HONGAVtZT,ERRT,Rl 
CALL HONGAV(WT,AVWT,R) 
CALL HONGAVIDWT,AVBT,RI 
ANU-I2.0*AVWI/AVBT 
ANU2''(PI*AVWT+2«0*(M»2.0I)/I  AV8T»(PI*2.0I I  

23 IM»1 
RETURN 
END 
subroutine HQNGAVIEtAVCfR) 
01 men s mn EU21» tEI21» 21) tRC2ll 
common hp.,hr2»hcthc2 toktomeg 
common M,N,MI,NI,MD,ND 
PI-3.1415927 
no 7 1=1,MI 
EU n-61 I,  D+ECI.NI) 
DO 6 J'2«N,2 

6 r i [ I ] .EII l)+EII,J)*4 
00 5 j=3.nd, 2 

5 EUI)=EI (U«-E{I,J)*a 
EKI l-HC*EI( I) /3 

7 CONTINUE 
SE»0.0 
SE-SE+EIlDfRdI+EÎIMI l*RIMI) 
DO 4 I«2fM,2 

4 SE-SE+E!!» )*RI 13*4 
00 3 I«3,MD, 2 

3 SE'SE+EKl l*R(II*2 
AVG=HR*SE*2/(3*PII 
RETURN 
end 
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APPENDIX G. NUMERICAL RESULTS FOR CHAPTER IV 

z Nusselt Number 

DRec Pr Case I Case 2 

0.171 X 10"̂  28.98 28.52 

0.356 22.45 21.94 

0.557 19.31 18.61 

0.775 17.27 16.49 

0.101 X 10"̂  15.72 14.96 

0.140 13.87 13.30 

0.184 12.64 12.07 

0.234 11.68 11.11 

0.290 10.73 10.33 

0.353 10.31 9.675 

0.477 9.527 8.786 

0.628 8.831 8.076 

0.812 8.309 7.494 

0.104 X 10"̂  7.801 7.101 

0.131 7.467 6.607 

0.165 7.248 6.269 

0.206 6.998 6.033 

0.256 6.901 5.798 

0.317 6.801 5.605 

0.392 6.750 5.450 

0.484 6.739 5.343 

0.595 6.724 5.250 

0.732 5.190 

0.898 5.173 

0.975 5.172 
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APPENDIX H. 

WORKING FLUID PROPERTIES 

This appendix contains the physical and transport properties of both 

water and ethylene glycol. Seven properties were evaluated for each fluid: 

density, isobaric thermal expansion coefficient, enthalpy, viscosity, 

thermal conductivity, Prandtl number,and viscosity thermal coefficient. 

The working fluid properties depend strictly on two state variables, 

pressure and temperature. Since the pressure variations in the system 

were too small to affect the fluid properties, they were adequately repre­

sented by functions of temperature. 

All properties were put in analytical form by fitting a power poly­

nomial through the data points. The polynomial expression for each prop­

erty has been compared with the reference data and, within the listed 

temperature range, has been found to deviate by no more than the percentage 

error indicated. 

Distilled Water 

The data points listed below were taken from the ASME Steam Tables 

[136] corresponding to 20 psia. 

Density 

Data points: T p _ 
(°F) (Ibm/ft ) 

50 62.4220 
100 61.9963 
150 61.1995 
200 60.0962 
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Equation: 

p = 62.422 - 0.21862 9 - 0.21785 9̂  + 0.01077 6̂  Ibm/ft̂  (H-1) 

where 

0 = T - 50 F (H-2) 

50 °F 

Temperature range: 50-200 °F 

Maximum error: 0.02% 

Isobaric thermal expansion coefficient 

The isobaric thermal expansion coefficient is defined by the equation 

» - - MI) ' (*-3) 
p 

By using Eq. H-1, one can write p as 

- 0.21862 - 0.43570 9 + 0.03231 9^ 1 
3 2 F ~ (H-4) 

50(62.422 - 0.21862 9 - 0.21785 9 + 0.01077 9 ) F 

where 

9 = T - SO (H-5) 
50 °F 

Enthalpy 

Data points: T h 

C°F) (Btu/lbm) 

50 18.11 
200 168.11 

Equation: 

h = T - 31.89 Btu/lbm (H-6) 
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Temperature range: 50-200 F 

Maximum error: 0.037» 

In the data reduction, an expression for fluid temperature as a func­

tion of enthalpy was needed. Eq. (H-6) was rearranged to yield 

T = h+ 31.89 F (H-7) 

Viscosity 

Data points: T 

(°F) (Ib-sec/ft̂ ) 

50 271.4 X lO"̂  
100 142.0 
150 89.1 
200 62.6 

Equation; 

\i = exp(5.6036 - 0.76097 9 + 0.1245 9^ - 0.01133 9^) 

X 0.0115826 Ibm/ft-hr (H-8) 

where 

9 = T - 50 F 

50 °F 
(H-9) 

Temperature range; 50-200 °F 

Maximum error: 0.74% 

Thermal conductivity 

Data points ; Ï k 

(°F) CBtu/hr-ft-̂ F) 

50 0.3392 
100 0.3633 
150 0.3806 
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Equation: 

k = 0.3392 + 0.0275 8 - 0.0034 8̂  Btu/hr-ft-°F (H-10) 

where 

8 = ̂  (H-11) 
50 °F 

Temperature range; 50-200 °F 

Maximum error; 0.13% 

Prandtl number 

Data points: T Pr 

fn : 

2̂  ̂ n3. 

50 9.28 
100 4.52 
150 2.71 
200 1.86 

Equation: 

Pr = exp(2.2279 - 0.84747 8 + 0.14015 8" - 0.012083 8") (H-12) 

where 

9 = ̂   ̂ (H-13) 
50 °F 

Temperature range; 50-200 °F 

Maximum error; 0.28% 

Viscosity thermal coefficient 

The definition of the isobaric viscosity thermal coefficients 

is similar to that for the isobaric thermal expansion coefficient; 

Y - - ; (IR) 
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By using Eq. (H-8), one can write Y as 

Y = ̂  (0.76097 - 0.2490 9 + 0.03399 6̂ ) 

where 

. T - 50 °F 0 = 

50 F 

Ethylene Glycol 

The physical properties of ethylene glycol were taken from Ref. 137. 

Density 

3 
Equation: The following expression for the specific volume, v, cm /gm, 

as a function of temperature T, °C, was reported in Ref. 137. 

V = 0.924848 + 6.2796 x lO"̂  g + 9.2444 x lO"̂  0̂  

+ 3.057 X 10"* 8̂  cm̂ /gm (H-16) 

where 

9 = T - 65 °C (H-17) 

The density can be obtained from Eq. (H-14), according to the relation 

p = Ibm/ft̂  (H-18) 

Temperature range: 40-340 °F 

Maximum error: 0.18% 

Isobaric thermal expansion coefficient 

The definition of p, as given by Eq. (H-3), can also be rearranged to 

read 

(H-15) 

(H-15) 
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P = KI) 
P 

Using Eq. (H-16), one can express p as 

P = 6.2795 X 10"4 + 1.84888 x lO"̂  9+ 9.171 x lO"̂  9̂  1_ 

1.8(0.924848 + 6.2796 x lO"̂  0 + 9.2444 X lO"̂  9̂  + 3.057 X lO"* 9̂ ) °F 

(H-20) 

Enthalpy 

Data points; T 

C°F) 
P̂ o 

(Btu/lbm- F) 

60 0.553 
140 0.598 
220 0.650 

Equation: 

Cp = 0.553 + 0.04150 9 + 0.0035 9̂  Btu/lbm-°F (H-21) 

where 

0 = T - GO F (H-22) 

80 F 

Equation (H-19) was integrated along the isobar p = 0 psig and the enthalpy 

was arbitrarily chosen to be zero at the freezing point T = 9.14 °F. The 

final result is given by 

h = 27.4786 + 44.24 9 + 1.66 0̂ + 0.09333 9̂  Btu/lbm (H-23) 

Temperature range; 40-300 °F 

Maximum error; For specific heat at constant pressure, the maximum 

error was 0.12%. The expression for enthalpy was numerically differentiated 

and compared with the computed values of specific heat. The comparison 

shov:sd no difference within the accuracy of computation. 
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Equation (H-21) was also rearranged to yield an expression for temper­

ature as a function of enthalpy. 

Viscosity 

Data points: T  ̂

(°F) (centipoise) 

40 45.0 
100 10.38 
160 3.86 
220 1.89 
280 1.10 

Equation: 

2 3 
p, = exp(3.80666 - 1.79809 9 + 0.38590 9 - 0.05878 9 

+ 0.004173 e'̂ ) X 2.42 Ibm/hr-ft (H-24) 

where 

e . T - 40 °F (H.25) 
60 °F 

Temperature range: 40-300 °F 

Maximum error: 0.56% 

Thermal conductivity 

Data points: 
T k 
(°F) (Btu/hr-ft-°F) 

50 0.1710 
150 0.1480 

Equation: 

k = 0.1825 - 2.3 X 10"S Btu/hr-ft-°F (H-26) 

Temperature range: 40-350 °F 

Maximum error: There is no difference between the computed value and 

the input data within the accuracy of computation. 
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Prandtl number 

Data points: T Pr 

(°F) 

40 340.587 
120 65.754 
200 26.468 
280 15.620 

Equation: 

Pr = exp(5.83067 - 2.12950 9 + 0.54344 6̂  - 0.058687 0̂ ) (H-27) 

where 

9 = ̂   ̂ (H-28) 
80 F 

Temperature range; 40-300 °F 

Maximum error: 0.69% 

Viscosity thermal coefficient 

The definition of y is given in Eq. (H-l4). Using Eq. (H-24), one can 

express y 

Y= ̂  [1.79809 - 0.7718 0 + 0.17634 0̂ ] (H-29) 
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APPENDIX I. 

CALIBRATION OF FLOWMETER 

The flowmeter used was a Brooks Rotameter, Model 1307, size 7, 

serial No. 7210-36292. Two spherical floats of Pyrex (specific gravity 

2,20) and Monel (specific gravity 8.84) were used to provide accurate 

measurements, of the flow rate within the range of interest. The flowmeter 

was calibrated by weighing the fluid collected for a measured time inter­

val at different flow settings. A constant-head tank was used to supply 

the desired flow rate. Since the viscosity immunity ceiling of both floats 

in 5 centistokes, it was necessary to calibrate the flowmeter when using 

water and ethylene glycol. The calibration data for both fluids are given 

below. 

Distilled Water 

The Pyrex and Monel floats were both calibrated with distilled water. 

The duration of each calibration run ranged from 5 to 15 minutes for the 

Pyrex float, and from 3 to 10 minutes for the Monel float. The calibration 

data, taken at an average temperature of 68 °F, are given in Table I-l and 

the calibration curve is shown in Fig. I-l. 

A polynomial expression of the mass flow rate as a function of the 

float position was obtained by fitting a power polynomial through the 

experimental data points. The final expression for the Pyrex float is 

given by 

m = 0.0750 + 0.507333 FP - 0.0504 FP̂  + 0.003867 FP̂  Ibm/min 

(I-l) 
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Table I-l Flowmeter calibration data for distilled water 

Actual flow rate 
(Ibm/min) 

Flowmeter reading 
(percent) Pyrex float Monel float 

10.0 0.075 0.320 
20.0 0.244 0.703 
30.0 0.395 1.067 
40.0 0.536 1.405 
50.0 0.670 1.730 
60.0 0.794 2.039 
70.0 0.919 2.336 
80.0 1.035 2.576 
90.0 1.142 2.841 
100.0 1.248 3.100 

where 

FP 
_ Pyrex float reading - 10 

30 
(1-2) 

The expression for the Monel float is given by 

m = 0.703 + 1.473 FM - 0.137 FM Ibm/min (1-3) 

where 

FM = _ Monel float reading - 20 
40 

(1-4) 
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Fig. I-l Calibration curve for flowmeter with water 
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Ethylene Glycol 

In order to obtain the desired range of flow rate for ethylene glycol, 

it was only necessary to calibrate the Monel float. Since the flow rates 

were generally lower than those of water, the duration of each run was in­

creased to range from 5 to 18 minutes. The calibration data for an average 

fluid temperature of 78 are given below; the calibration curve is shown in 

Fig. 1-2. ' 

Table 1-2 Flow meter calibration data for ethylene glycol 

Flowmeter reading Actual flow rate 
(percent) (Ibm/min) 

10.0 0.0287 
20.0 0.1109 
30.0 0.2405 
40.0 0.4159 
50.0 0.6869 
60.0 0.9417 
70.0 1.1726 
80.0 1.3728 
90.0 1.5860 
100.0 1.8406 

During the heat transfer and pressure drop runs, provisions were made 

to keep the inlet fluid temperature to the flow meter as close as possible 

to 78 °F to avoid any errors in the calibration data. Due to the nature of 

the calibration curve, it was not possible to fit an accurate power polynomial 

through the data points. However, numerical interpolation of the data 

points was performed whenever needed. 
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Fig* 1-2 Calibration curve for flow meter with ethylene glycol • 
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APPENDIX J. 

COMPUTATION PROCEDURE FOR DATA REDUCTION IN CHAPTER V 



www.manaraa.com

245 

COMPUTATION PROCEDURE FOU OAT* REDUCTION IN CH 

REAL NU,NUFtNUO,Ll,LO»tT,NUOF 
DIMENSION EHF(IO) iTSHPaottTUIUÛ) 
DATA 01,02,TLl,TL2,TL/0.033417,0.03675,1.583333,3.66t»67$4.0/, 

lTHCT8/9.«/ 
DATA PI,(... ,PCF /3. 141593.32.174,3.4129/ 
DATA RH0IIG,RH0FL/874.12,69.34/ 
DATA 001,002,003,004/-!.798006,0.385912,-0.05878,0.004179/ 
Ll»l.125/12.0 
L0«1.0/17.0 
LT.46.87}/12.0 
ARFA ^ PI *01*01/4.0 
OAL«0.0182/12.0 
AS=P1*01**2/4.0-0AL*Dl 
P.EAD (5,110) Y 
013 = 01**3 
OH«IPl*01+4.0*OAL)/(PI+2.0*11.0-0*1/0111 

1 READ (5,2,END=500) NR,NS,M,KFN,VLT,VLS,H2 
2 FORMAT I3I5,2F10.4,F9.4,F11.4» 

AMP « 2.4*VLS 
RT « VLT/AMP 
WAT » 0.985*VIT»AMP 
QTOT • WAT*PCF 
QPOA = QT0T/(PI*D1*TLI 
FLOW « FLOWR(H,RFM) 
G=FLOW/(PI*01**2/4.0-0Al*Dll 
GOO»FLOW/AREA 
OPUV - 4.0 *QT0T/(PI*(D2*02-D1*011*TL) 
OTW ' QPUV *(02*02*ALOG(D2/01I-(DZ*02-D1«01I/2.0I/I8.9«'TMCTBI 

WALL TEMPERATURE 

READ (5,51 (EMF(I),I«1,10I 
5 FORMAT (10F8.4) 

CALL THCPL(EMF,TEMP,10) 
00 10 1 - 1,8 

10 TWKI) - TEMP(I)-OTH 
THM«nWI(ll + TWI(3)+TWI (51 «THI (71«'2.0*(TMI ( 2) 4-THI(4)«'TMI(6)•TMI( 81 I 

0 / 1 2 . 0  

FLUID BULK TEMPERATURE 

HFI « HFL(TEMP(9)) 
HFF " HFL( TEMP{10) ) 
OHFL - (HFE-liri)*FLOW 
TLTC • TLI 
IF (NS.EQ.2) TLTC m TL2 
01N » QTOT*TLTC/TU 
HFB » HFI4-QIN/FL0W 
TFB » THL(HFB) 
TFLM « ITFB*TWMI/2.0 

OTWB « TWM-TFB 
CT«(TFB-40.01/60.0 
ALPHA"(ODl*2*DO2*CT*3*OO3*CT*»2*4*DD4*Cr**3l»l-l*/6O.0 
BE«ALPHA*OTWB 
OT Q-(QPOA* 011/THCHL(TFB) 
HTC " OPUA/OTWB 
Vise - VISCUITFBI 
VISCF«VISCL(TFm» 
VISCW-VISCLtTWNI 
BETA - BETALtTFBI 
BETAF-BETALITFLS) 
VRH02 > (VISC/RH0LITFBII**2 
VRH0F2'"(VISCF/RHaLCTH.Iin»<»2 V 
PR > PRNOITFB) 
PRF-PRNO(TFLN) 
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VI SHB-vi rxw/visc 
c 

NU - nrC*Dl/THCNL ITFBI 
C 

NUF-HTC»Dl/THCNLtTFLM) 
RES=G«D1/VISC 
RE0«G00*D1/VISC 
RE«REO 
REY.RES/Y 
REF-G*D1/VISCF 
REFY-REF/Y 
REH«G»DH/VISC 
REHF=G*OH/VISCF 
GR-4.94»REH**2»OH*BETA»DTWB/(Y»*2*OU 
CRF=4.94*REHF**2*I)H*BETAF*DTWB/(Y**2*01I 
GRC»GR*OT(}/OTWB 
CRCF»GRF»OTQ/OTHB 
RA=GR»PR 
RAF«GRF*PRF 
RAQ*GRQ»PR 
aAOF»GROF*PRF 
OZ = TLTC/(D1*RES*PR) 
i:/.F-TLTC/l D1*REF«PRF) 
CR0OGC»8ETA*013*DTWB*3600.0*3600.0/VRH02 
GR0F.GC*BETA«D13»DTHB*3600.0*»2/VRH0F2 
RAC«GRO*PR 
RACF«GROF»PRF 
RAO'ABS(RAOi 
RAOO=RAO»OTO/DTHB 
RAOQF»RAOF»DTQ/OTHB 
RAOQ-ABStRAOQ» 
GRO »ABS(GRO) 
nROF«ABS(GROF) 
Nun=0.2515»RAOQ*»O.2675 
RATO=NU/NUO 
NU0F«0.3836*GROF»*0.2S6*PRF**0.31 
RATOF«NUF/NUrjF 
REPGR-REY/IGR0**0.25) 
REPGRF.REFY/tGR0F**0.2 5) 

C 
C MEASURED FRICTION FACTOR 
C 

HP-H2 
OPFL « HP *IRHOHG-RHOFL1/1728.0 
TFB1«TEMP{9) 
OINM-OTOT/2.0 
HFBM-HFl+QINM/FLOW 
HF B 2» HFI+Q TO T/FLOW 

C 
TFBI0«TEHP(9I 
TFBH»THL(HFBH) 
TFE»TKL(HFB2) 
RH0I«RH0L(TFbiQI 
RHCM«RH0L(TF8M) 
RHOE-RHOHTFE) 
VEH-G/RHOI 
VELM'-G/RHOM 
VELE»G/RHOE 
REI«6»D1/VISCL(TFBIO) 
REM-G*01/VISCLCTFBH» 
ReE-G»Dl/VISCL(ÎFEI 
FRINI-175.6/RE1**0.95 
FRINM-175.6/REM**0.95 
FRINE«175.6/REE**0.95 
DPI »FRINI*RHOI*VEL1*VELI/(01*GC*2.0*3600.0*3600.0*1729.01 

C»LG 
DPO»FRINE*RH0E*VELE**2/lOl*GC*2.O*36O0.0**2*1728.0l*L0 

C 
OP H « OPFL-DPI-OPO 
FRS-28B.O*3600.0**2*GC*D1*OPH/(TL*RHOM*WELM**2> 
FRES»FRS»RES 
FRS-A8S1FRS» 
AA 1" ( FR S* A S/114. 64* ARE A H **0 . S 
RECP-AA1*RES**1.5*(NU0/RA0Q)**0.065 
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VELM-VELM/3600.0 
C 
c 
c 

HRITEC6,15» NR,NS,FLOW,RFM,VLT,A?<P,RT,WAT,QPUA,veLH,Y 
WRITE 16,20) TWI(1),TWII2),TMI(8I,TMI(3),TWII7I,TMII4)»TUII6I, 

CTMU5» ) 
WRITE (6,60) TENP(9>,TENP(10)»TFB,THM,HTC,QT0T,DHFL»NUfNUF,rR,PRF, 

CRES,REF,FRS,REM ,GRQ,GRQF,RAOQ,RAOQF,GZ,GZF 
WRITEI6,100) NUO,NUaF,RATO,RATOF«BE,VlSHB,REY,REFY,RECP 
WRITE(7,101) NR,NS,RFM,VLT 
WRITE(7,102) NU,NUF,NUO,RATO,PR,PRF,VISWB 
WRITE(7,103) GR,GRF,GRG,GRQF,GZ,GZF,RA,RAF,KAO,RAQQ, R A g ,RAC!?* 

CRES,REF,REH,REHF,BE,REY,RATOF,FRS,FRES»RECP,MIOF,REO,REf"r:Y,RAOF 
C,REM 

15 FORMAT (IHl, 35X,60HC0HBINE0 FORCED AND FREE CONVECTION iN HORIZONT 
lAt METAL TUBE,//,10X,5HRUNS ,12,/tlOX,«HSECTÎÛN» ,I1,//,5X»17HSYST 
2 E M  P A R A M E T E R S , / , 5 X , 1 7 H ,  
310X,27HWATER FLOW RATE > ,F10.4,7H LBM/HR,F10.3,/, 
410X,27HVOLTAGE ACROSS THE TUBE « ,F10.4,6H VOLTS,/, 
510X,27HCURRENT THROUGH THE TUBE • ,F10.4,SH AMPS,/, 
610X,27HTU8E ELECTRIC RESISTENCE " ,E10.4,5H OHMS,/, 
710Xi2?HELECTRIC POWER INPUT • ,F10.4,6H WATTS,/, 
810X,27HHEAT FLUX • ,F10.4,15H BTU/(KR.SQ.FT),/, 
910X,27HVEL0CI7Y,TMIST RATIO, H/D- ,E10.4,7H FT/SEC,F10.3,/ I  

20 FORMAT (5X,3ÔHINSIDE WALL TEMPERATURE DISTRIBUTION,/,5X,36H**##*** 
*#****#*#******»»##,//,40X,F10,4,//,25X,F10.4,ieX,F10.4, 

2//,23X,F10.4,22X,F10.4,//,25X,F10.4,18X,Fl£.4,//,40XcF10.4,//l 
60 FORMAT (5X,16HSYSTEM VARIABLES,/,5X,I6H*******#***#***#,//, 

110X,27HFLUID INLET TEMPERATURE - ,F10.4,2H F,/, 
210X,27HFLUI0 EXIT TEMPERATURE « ,F10.4,2H F,/, 
310X,27HFLUID BULK TEMPERATURE - ,F10.4,2H F,/, 
4I0X,27HMEAN WALL TEMPERATURE - ,F10.4,2H F,/, 
510X,27HHEAT TRANSFER-COEFFI. » ,F10.4,17H BTU/IHR.SQ.FT.FI,//, 
610X,27HT0TAL POWER INPUT « ,F10.4,7H BTU/HK,/, 

710X,27HTOTAL ENTHALPY CHANGE • ,FX0.4,7H BTU/HR,//, 
810X,27HNUSSELT NUMBER BULK, FILM» ,2F15.4,/, 
910X,27HPRAN0TL NUMBER mm. ,2F15.4,/, 
110X,27HREYN0LDS NUMBER " " - ,2E15.6,//, 
210X,27HFRICTION FACTOR FRS,REM « ,2E1S.6,/, 
210X,27HGRASHOF NUMBER OF CENT. F- ,2E15.6,/, 
310X,27HRAYLE!GH NUMBER 00 RAOQ « ,2E15.6,/, 
410X,27HGRAETZ NUMBER D " " - ,2E15.6,/) 

100 FORMAT!'0', 9X,«NUSSELT NO FOR EMPTY B,F -•,2F15.4,/, 
210X,«NU NO. RATIO, NUS/NUO B,F «',2F15.4,/, 
310X,«BERGLES NUMBER BE ••,P15.4,/, 
410X,«VISCOSITY RATIO W/B ••,E15.5,/, 
510X,«RE/Y,BULK,FILM »«,2E15.5,/, 
610X,'RE BASE ON CONS. POWER ' -«,615.5) 

101 FORMAT!2I5,FlO.l,F10.4) 
102 FORMAT(4F10.5,2F10.4,F10.6) 
103 FORMAT! 20A4) 
110 FORMAT IF10.3) 

GO TO 1 
500 STOP 

END 
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SUMPOUT INE THCPLIEMF,TEMP,NI 
THERMOCOUPLE TEMPERATURE (Fl AS A FUNCTION OF 
ELECTROMOTIVE FORCE IMVI 

DIMENSION EHFtN»,TEMP(NI 
DATA X1,X2,X3 /32.35441,45.69075,-0.84649/ 

00 1 I « 1,N 
TEHP(I) = (X3*EMFII)*X2I*EMF(I)+X1 
RETURN 
END 
FUNCTION FUOWR(N,R) 

ACTUAL FLOW RATE IN LBM/HR ' 

IF (N. EG. 2) GO TO 1 

MONEL FLOAT (1485) FOR ETHELENE GLYCOL 

IFIR.GT.9.99-ANO.R.LT.10.011 FLOMR» 0.0237 
IF(R.GT.19.99. ANO.R. LT.20.01) FL0MR-0.H09 
IF(R.GT.29.99.ANO.R.LT.30.01) FLOWR-0.2405 
ÎFiK.GT.3v.99.ÂN0.R.LT.40.0H FLOHR-0.4159 
TF(R.Gr .49.99.AN0.R .LT.50.01) FLOWR-0 .6869 
IF JR.GT.59.99.ANO.R.LT.60.01) FL0HR»0.9417 
IF{R.Gr.69.99.ANO.R.LT.70.01» FLOWR»!.1726 
IF<R.GT,79.99.AND.R.LT.80.01) FLOHR-1.3728 
TF(R.GT.09.99.ANO.R.LT.90.01) FLOHR-1.5860 
IF(R.GT.99.99.ANO.R.LT.100.01) FLOWR'1.8406 
FL0WR=FL0WR*60.0 
RETURN 

IM=1 
IF?R.GT.0.19.ANO.R.LT.p.21) FLOH-O.99826 
IF(R.GT.0.29.Ar;0.R-LT.0.31) FLOW-2.01665 
IF(R.GT.0.39.AN0.R.LT.0.41) FL0W"3.33088 
IFtR.GT.0.49.«ND.R.LT.0.51) FLOW-4.13934 
IF(R.GT.O.59.ANO.R.LT.0.61) FLOW-4.98561 
IF(R.GT.0.65.AN0.R.LT.0.67) FL0W«5.48973 
FLOHR>=FLOW*60.0 
RETURN 
END 
FUNCTION RHOLIT) 

DENSITY AS A FUNCTION.OF TEMPERATURE (Fl FOR ETHELENE GLYCOL 
UNITS LBM/QU.FT 

DATA Xl,X2,X3fX4 /O.924848,6.2796E-04,9.2444E-07,3.057E-09/ 
TC • (T-32.01/1.8 
OT - TC-65.0 
VOL '•UX4»DT+X3 J»0T+X2I»0T+X1 
RHOL • 62.43/VOL 
RETURN 
END 
FUNCTION 3ETAL(TI 

COEFFICIENT OF THERMAL EXPANSION AS A FUNCTION OF 
TEMPERATURE (Fl FOR ETHELENE GLYCOL 

UNITS 1/F 

DATA Xl,X2fX3.X4 /O.924848,6.2796E-04,9.2444E-07,3.057E-09/ 
TC « (T-32.0 1/1,8 
OT « TC-65.0 
VOL (X4*0T+X3)*0T+X2I*DT»X1 
DVOL » (3. 0»X4»OT*-2.0»X3I»OT+X2 
BETAL- DV0L/I1.8*V0L) 
RETURN 
END 
FUNCTION HFL(T) 

ENTHALPY AS A FUNCTION OF TEMPERATURE (Fl FOR ETHELENE GLYCOL 
UNITS BTU/LBM 

DATA X1,X2,X3,X4 /27.47^63,44.24,1.66,O.093a33/fT0,0T /bO.0,80.0/ 
THETA » (T-TO)/DT 
HFL - ((X4$THETA+X3I*THETA+X2I#fHETA+Xi 
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RETURN 
END 
FUNCTION THL(H) 

C TEMPERATURE AS A FUNCTION OF ENTHALPY IBTU/LBM) FOR 
C ETHELENE GLYCOL 
C UNITS F 

DATA X1,X2,X3,X4 /27.47863,44.24,1.66,0.093333/,TO,OT /60.0,90^0/ 
P « X3/X4 
Q « X2/X4 
R = (Xl-H)/X4 
P2 " P*P 
A - Q-P2/3.0 
B - (2.0*P$P2-9.0*P*Q*27.0#R)/27.Q 
C » SORTIB»8/4.0+A*A*A/27.0) 
A1 « (-8/2.0*0**(1.0/3.0) 
B1 • (B/2.0+C)**(l.0/3.0) 
THETA- A1-81-P/3.0 
THL - THETA*OT»TO 
RETURN 
END 
FUNCTION VISCL(T) 

C VISCOSITY AS A FUNCTION OF TEMPERATURE (Fl FOR-
C ETHELENE GLYCOL 
C UNITS LBM/(FT.HR) 
C 

DATA X1,X2,X3,X4,X5 /3.80666,-1.798086,0.385912,-0.05878,0.004173/ 
1,TO,OT /40.0,60.0/ 

THETA « (T-T0)/DT 
VISCL « 2.42*EXP((((X5*THETA*X4)*THETA+X3)*THETA+X2)*THETA»X1» 
RETURN 
END 
FUNCTION THCNL(T) 

C THERMAL CONDUCTIVITY AS A FUNCTION OF TEMPERATURE IF I 
C FOR ETHELENE GLYCOL 
C UNITS 8TU/(HR.FT.F» 
C 

DATA XI,X2 /O.1825,-2.3E-04/ 
THCNL - X1+X2*T 
RETURN 
END 
FUNCTION PRNO(T) 

C PRANDTL NUMBER AS A FUNCTION OF TEMPERATURE (F) FOR 
C ETHELENE GLYCOL 
C 

DATA X1,X2,X3,X4 /5.83067,-2.129503,0.54344,-0.058687/,TO,DT /40.0 
1 ,80 .0 /  

THETA (T-TOI/OT 
PR NO • EXP (( (X4*THETA+X3»*THETAi-X2J»THETA+Xl» 
RETURN 
END 

// 
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APPENDIX K . 

SAMPLE CALCULATIONS 

Heat Transfer 

Run 36 for ethylene glycol with y = 2.45 is used to illustrate the 

details of data reduction procedure. 

Physical dime;isions and properties of tube and tape 

Inside tube diameter, = 0.401 in. 

Outside tube diameter, = 0.441 in. 

Total heated length, L̂  = 48.0 in. 

Length to measuring section, L̂  = 44,0 in. 

Thermal conductivity of tube and tape, k at 100 = 9.4 Btu/hr ft °F 

Thickness of tape Ô = 0.0182 in. 

Length of pressure tap (1 in, away from heating section) = 50 in. 

Measured quantities 

The tube wall thermocouple readings at the measuring section were 

numbered 1 through 8. These locations were 45° apart, starting clockwise 

from the top of the tube. The tape was located at 120° from the top of the 

tube. The two thermocouples placed in the flow at the inlet and outlet 

sections were numbered 9 and 10. The measured data were as follows: 

eĵ  = 1.417 mv ê  = 1.434 mv 

eg = 1.412 mv ê  - 1.432 mv 

eg = 1.444 mv eg = 1.414 mv 

ê  = 1.438 mv ê  = 0.777 mv 

ê  = 1.414 mv ê g = 1.195 mv 
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Flow meter reading, FMR = 100% 

Voltage across the test section, = 3.00 V 

Voltage across the shunt, V̂  = 28.42 V 

Pressure drop reading, AP = 1.014 in. Hg 

Mean Wall temperature 

The wall and fluid temperature were obtained from the corresponding 

thermocouple reading using NBS Circular 561. 

"w,l -
95.40 °F 

\,6 -
96.30 °F 

2̂ = 95.27 °F 

II 

96.56 °F 

II 
C
O
 96.05 °F 

\,8 
95.18 °F 

II 96.14 °F 67.35 °F 

ŵ,5 
95.30 °F T = 

o 
85.75 °F 

The electric current through the heat test section is obtained from 

the voltage across the shunt with calibration of 240 amp/100 mv. 

I = 2.4 V 
s 

= 2.4 X 28.42 = 68.208 anç 

The test section insulation, limited the heat loss to about 1.5 percent 

of the total power generated in the tube wall. Accordingly, the net heat 

input to the fluid can be calculated as follows: 

q = 0.985 V̂  I 

= 0.985 X 3.00 X 68.208 X 3.4129 

= 687.89 Btu/hr 
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The average heat flux, q",- based on the inside tube surface area, is 

given as 

q" = 
ITDiLj 

1638.1 Btu/hr ft ' 

The rate of volumetric heat generation may be calculated according 

to the relation 

q " = 

f ?l - "!) 4 

4 X 687.89 X 12̂  

t7[<0.44i)̂  - (0.401)2] ̂  

= 9.351 X 10̂  Btu/hr ft̂  

The temperature drop across the tube wall can then be calculated from 

the results suggested by Morcos and Bergles [97] as follows: 

î; - K'o ' ̂)] 

9.315 X 10̂  
2 X 9.4 X 144 74 

- i [(0.441)^ - (0.401)^]| 

= 0.14 °F 

The above temperature drop was applied uniformly around the circum­

ference of the tube so as to obtain the following inside wall temperatures: 



www.manaraa.com

253 

\,1 
95.26 °F ŵ,5 ' 

95.16 °F 

II CM 95.13 
ŵ,6 

96.16 °F 

\ ,3  -
95.91 °F II 96.42 °F 

II 96.00 °F 

II 00 H
 95.04 °F 

The circumferentially averaged inside tube wall temperature was calcu­

lated from the above eight values using Simpson's integration: 

ŵ ̂  12 [̂ w,l \,3 \,5 \,7  ̂(\,2 

+ Ve + ̂w.s)] 

= 95.61 °F 

Fluid bulk temperature 

Using the flowmeter calibration curve gives the fluid flow rate: 

m = 110.44 lb /hr 
tc 

An energy balance over the tube length from the onset of heating up to 

the measuring section yields: 

L 
q = 6(ĥ  - h ) (K-1) 

SI 

where ĥ  ̂and ĥ  are the fluid enthalpy at the inlet and measuring section, 

respectively. Equation (K-1) can than be rearranged to yield: 

qL 
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h = 37.24 Btu lb 
s m 

From the physical properties of ethylene glycol, the fluid bulk temperature, 

corresponding to ĥ , is found to be: 

= 77.55 °F 

Nusselt number 

The circumferentially averaged heat transfer coefficient is calculated 

as follows: 

îï = - — 
Tw - Tb 

163.8 
95.61 - 77.55 

= 90.68 Btu/hr ft ̂  °j;' 

The above calculated h and the physical property of ethylene glycol eval­

uated at the bulk temperature were used to obtain Nusselt number as follows: 

ïï • D. 

"̂s = -T"̂  

Nondimensional parameters 

The physical properties of ethylene glycol evaluated at the bulk tem­

perature were employed to calculate the following dimensionless parameters: 

gp DJ(Î„ - Tj 
=5- 2 
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 ̂32.2 X 3.88 X 10"4 X (66.9)2 y (0.401)̂  X (3.600)̂  

(41.15)2 ̂  (12)3 

X (95.61 - 77.55) 

•>? = 0.3329 X 10' 

= 0.3329 X 10̂  X 140.4 

= 0.467 X 10̂  

s 
" (f "i - «V 

110.44 X 12 

f (0.401 - 0.0182) X 41.15 

= 110.13 

L 
2 = 

D. Re Pr 
1 s 

0.401 X 110.13 X 140.4 ~ 7.094 x 10 

%==/? = %r = 45.04 

Nusselt number ratio 

Since the correlation from Morcos and Bergles are based on film tem­

perature, it is necessary to convert the present data utilizing bulk mean 

temperature to film temperature, which is calculated to be 

1 /m' 

- I (95.61 + 77.55) = 86.58 °F 
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The Nusselt number using film temperature in the present experimental data 

IS 

h ' D. 

"̂sf " 

90.68 X 0.401 
= 0.1622 X 12 = 18-64 

The heat transfer correlation from Morcos and Bergles [97] for metal tube 

and ethylene glycol fluid is as follows 

Nu ̂  = 0.3836 Gr. • Pr 
or t r 

= 0.3836 X (0.5016 X 10̂ )°*̂ ^̂  X (117.1)°*̂  ̂ (K-2) 

= 7.921 

Nu \ 

ET - 2.353 
o/f 

Pressure Drop 

/ 
Midpoint bulk temperature 

The friction factor was evaluated at an axial location halfway along 

the heated section. An energy balance over the first half of the heated 

section yields 

f = A (ĥ  - hj.) 

where ĥ  is the fluid enthalpy at the midpoint,. The enthalpy at the midpoint 

can thus be obtained as follows: 
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_ OT CA ̂  687.89 
- 31.54 + 2 X 110.44 

= 34.65 Btu/lb 
m 

which results in 

= 72.92 °F 

Friction factor 

The Reynolds number at the middle section of the tube is given by 

(4 ®i " 

 ̂ 110.44 X 12 

I (0.401 - 0.0182) X 45.85 

= 98.85 

The isothermal pressure drop data shown in Fig. 5-13 is found to have 

the following functional dependence on the Reynolds number: 

 ̂= rT (K-3) 
s 

The pressure taps on the metal tube are 50 in. apart, 1 in. outside the 

48 in. heated length. Ic is necessary, therefore, to calculate the iso­

thermal pressure drop, using Eq. (K-3) for both of these segments. This 

pressure drop is subtracted from the total measured pressure drop to yield 

the pressure drop across the heated section. Using the inlet and outlet 

fluid temperatures, one can calculate the Reynolds numbers at the inlet and 

outlet section as follows: 

110.44 X 12 

 ̂(0.401 - 0.0182) X 52.0 
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= 87.10 

110.44 X 12 Re = 
° f (0.401 - 0.0182) X 28.2 

= 160.7 

The corresponding friction factors are given by 

- SOÔ • 1-836 

The isothermal pressure drop across the unheated inlet and outlet seg­

ment can be calculated according to the following equations: 

^ 1.836 X 1 X 68.43 x (1.931 x 10^)^ 

32.3 X 0.401 X 2 X (3600)2 ^ 12 

= 1.065 X 10 2 psi 

 ̂̂ 0.996 X 1 X 67.62 x (1.951 x 10̂ )̂  

° 32.2 X 0.401 X 2 X (3600)2 x 12 

= 0.6275 X 10"2 psi 

The total measured pressure drop, as calculated from the differential mer­

cury head, is given by 

= 1.014 X (̂ *̂'172; = 0.472 psi 
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Finally, the pressure drop across the heated section can be calculated as 

AP, = - AP. - AP 
h t 1 o 

= 0.472 - 1.065 X lO"^ - 0.6275 x lO"^ 

= 0.460 psi 

which yields 

^ = — 

p W 

 ̂2 X 32.2 X 0.401 X 0.460 X 144 x (3600)̂  

67.92 X (1.942 x 10̂ )̂  X 48 

= 1.833 

A listing of the FORTRAN IV computer program utilized to facilitate the data 

reduction is given in Appendix J. The experimental results for heat trans­

fer and friction factor are tabulated in Appendix L. 
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APPENDIX L . 

TABULATION OF EXPERIMENTAL RESULTS 
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Experimental Results for Ethylene Glycol, y - 5.08 

Run 
m 

Ib/hr 
q" 2 

Btu/br-ft f Pr Be 
*10 Nu /Nu # o Ref? 

IL 14.43 163.8 73.95 79.81 10.99 13.23 151.5 0.138 5.646 0.45 1.147 21.8 7-1 

,2 14.43 163.8 78.37 83.95 10.99 14.67 138.1 0.128 5.966 0.55 1.174 25.29 7-2 

3 24.95 165.4 69.90 75.46 6.300 20.77 165.3 0.135 5.972 0.369 1.246 32.61 10-1 

4 24.95 165.4 72.49 77.47 6.300 22.11 156.3 0.119 6.696 0.419 1.371 35.68 10-2 

S 41.21 164.8 65.39 69.99 3.779 30.70 182.7 0.115 7.140 0.292 1.544 45.66 13-1 

6 41.21 164.8 66.96 71.39 3.779 31.92 176.4 0.110 7.439 0.3168 1.589 48.32 13-2 

7 41.21 649.6 74.22 90.17 3.084 38.04 150.6 0.375 8.229 1.791 1.154 52,69 14-2 

8 24.95 641.3 83.83 99.73 4.764 28.66 123.7 0.350 8.258 2.776 1.085 42.34 11-2 

9 56.50 649.8 70.76 85.96 2.547 48.03 162.2 0.366 8.595 1.512 1.236 68.23 18-2 

10 70.36 648.2 M.43 82.62 2.313 56.51 170.7 0.348 9.159 1,342 1.341 83.26 22-2 

11 41.21 649.6 68.06 82.02 3.084 32.80 1.2.1 0.343 9.315 1.320 1.367 42.52 14-1 

12 41.21 177.2 88.45 119.7 2.323 52.33 113.0 0.667 9.497 7.574 0.9742 69.80 15-2 

13 56.50 649.8 66.25 79.70 2.547 43.00 179.2 0.335 9.654 1.205 1.437 58.16 18-1 

14 56.50 179.2 81.07 111.3 2.024 61.05 130.7 0.679 9.813 5.554 1.056 82.77 19-2 

15 82.37 652.5 67.63 80.64 2.154 64.86 173.7 0.321 10.04 1.297 1.476 98.87 28-2 

16 41.21 1440.4 74.91 102.4 2.324 38.66 148.4 0.644 10.60 4.104 1.195 45.07 15-1 

17 41.21 1940.0 96.00 134.4 2.022 62.24 96.70 0,759 10.76 14.82 0.9654 82.47 16-2 

18 110.4 656.7 65.00 77.69 1.750 82.69 181.8 0.302 10.84 1.177 1.617 78.36 35-2 

19 70.36 648.2 64.81 76.68 2.313 51.65 185.1 0.298 10.89 1.116 1.639 73.12 22-1 

20 70.36 2541.1 87.85 135.0 1.471 88.20 114.3 1.010 11.11 13.18 0.9826 118.4 24-2 

21 95.16 654.4 66.69 78.42 2.019 73.21 177.4 0.291 11.15 1.240 1.651 114.9 30-2 

22 24.95 
1 

1422.5 104.9 131.7 3.334 44.20 83.86 0.513 11.19 15.15 1.036 63.73 12-2 

2 Reynolds number for smooth tube computed assuming constant pumping power for swirl and smooth tube. 
Heat Transfer Laboratory file number. 
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6 q" 2 \ \ 
Run Ib/hr Btu/hr-ft f Re^ Pr 

23 95.Iv 1459.4 72.43 98.44 1.702 84.19 156.5 

24 56.5' 1450.0 71.04 96.88 2.024 48.34 161.2 

25 56.50 2520.0 95.70 141.8 1.535 83.45 98.65 

26 82.37 2539.2 84.04 129.1 1.403 95.06 123.1 

27 82.37 652.5 64.52 75.56 2.154 60.02 186.3 

28 110.4 1457.7 71.67 96.24 1.501 95.93 159.0 

29 70.36 1449.2 68.17 92.01) 1.868 56.15 171.7 

30 95.16 2556.5 81.65 124.4 1.384 104.1 129.2 

31 110.4 2550.7 79.65 121.1 1.236 115.5 134.4 

32 56.50 2520.0 78.51 119.0 1.535 57.61 137.7 

33 82.37 1445.0 67.57 90.22 1.792 64.76 174.0 

34 95.16 395.8 87.55 138.7 1.241 118.5 115.0 

35 110.4 656.7 63.26 73.30 1.750 77.95 191.7 

36 70.36 2541.1 73.85 112.6 1.471 64.36 151.8 

37 95.16 654.4 63.98 73.72 2.019 68.41 188.6 

38 95.16 1459.4 66.42 87.49 1.702 72.73 178.5 

39 82.37 2539.2 72.06 108.9 1.408 72.22 157.7 

40 121.0 700.1 77.07 87.11 1.420 119.3 141.8 

41 82.37 3202.5 74.09 119.2 1.274 75.79 151.0 

42 110.4 1457.7 66.49 86.38 1.501 84.55 178.2 

43 95.16 2556.5 71.19 105.5 1.384 81.71 160.7 

44 121.0 1100.4 80.04 94.95 1.334 127.7 133.4 

Be Nu ;3 Nu /Nu Re ) Ref, 
s xicr so op 

0.620 11.31 3. 686 

0.622 11.33 3. 433 

0.937 11.39 18. 37 

0.992 11.53 11. 10 

0.278 11.77 1. 106 

0.589 11.94 3. 546 

0.586 12.16 2. 962 

0.955 12.22 10. 01 

0.940 12.52 9. 102 

0.926 12.63 8. 527 

0.558 12.77 2. 864 

1.098 12.95 16. 47 

0.255 13.01 1. 043 

0.916 13.22 6. 877 

0.246 13.38 1. 079 

0.524 13.84 2. 729 

0.879 13.90 6. 296 

0.232 14.14 2. 213 

1.061 14.36 8. 772 

0.494 14.65 2. 736 

0.826 14.97 6. 073 

0.337 15.03 3. 999 

293 124.3 31-2 

311 59.08 19-1 

9588 110.3 20-2 

047 130.2 26-2 

773 88.39 28-1 

374 142.1 36-2 

439 71.33 32-1 

126 148.4 32-2 

171 164.2 37-2 

195 64.59 20-1 

519 86.66 27-1 

078 167.5 33-2 

976 118.1 35-1 

290 75.10 24-1 

022 104.2 30-1 

656 100.6 31-1 

375 87.52 26-1 

904 197.2 1-2 

315 88:28 25-1 

753 118.4 36-1 

487 104.5 32-1 

755 206.3 3-2 

I 

1 

0 

1 

1 

1 

I 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

I 

1 

1 

1 

1 
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m q" 2 T T 
Run Ib/hr Btu/hr-ft f Rê  Pr 

45 110.4 2550.7 70.64 103.7 1.236 93.59 162 

46 121.0 1566.0 83.19 103.8 1.254 137.0 125 

47 95.16 3217.1 74.44 115.6 1.241 88.28 149 

48 121.0 2125.0 86.98 114.3 1.162 148.9 116 

49 121.0 700.1 74.82 83.61 1.420 113.2 148 

50 110.4 3942.0 76.28 124.1 1.018 106.9 144 

51 121.0 2739.0 91.37 124.6 1.101 163.4 106 

52 121.0 1100.4 76.50 89.34 1.334 117.8 143 

53 121.0 1566.0 78.17 95.38 1.254 122.4 138 

54 121.0 2125.0 80.19 103.2 1.162 128.1 133 

55 121.0 273.90 82.65 111.3 1.101 135.4 126 

56 248.4 1572.4 75.99 91.38 0.732 238,9 145 

57 199.9 2136.4 74.39 95.53 0.771 109.6 146 

58 248.4 2145.1 79.02 99.09 0.682 256.2 136 

59 248.4 1105.2 71.81 82.01 0.766 216.5 158 

60 199.9 2775.9 77.43 102.7 0.721 198.8 140 

61 199.9 4280.6 91.03 130.7 0.629 268,0 107 

62 299.1 1571.9 71.48 85.57 0.683 258.5 159 

63 299.1 1103.8 68.45 77.92 0.683 240.3 170 

64 299.1 2143.1 73,17 91.60 0.658 269.3 154 

65 248.4 2772.0 82.63 106.8 0.650 277.8 126 

66 248.4* 1572.4 73.52 86.98 0.732 225.5 152 

6 

2 

9 

2 

7 

2 

9 

5 

7 

0 

6 

1 

9 

2 

5 

8 

6 

8 

6 

0 

6 

9 

0.799 15.49 5.898 1.546 121.2 37-1 

0.456 15.54 6.583 1.615 217.8 2-2 

0.968 15.79 8.961 . . 1.440 109.5 33-1 

0.588 16.02 10.60 1.495 232.9 4-2 

0.206 16.10 1.986 2.202 182.8 1-1 

1.109 16.71 11.99 1.425 130.6 38-1 

0.695 17.06 16.59 1.445 256.3 5-2 

0.297 17.36 3.384 2.080 183.6 3-1 

0.394 18.48 5.213 1.990 185.0 2-1 

0.519 18.85 7.778 1,844 187.6 4-1 

0.636 19.54 11.23 1.756 195.3 5-1 

0.358 20.69 4.720 2.260 386.6 16-2 

0.470 21.46 6.229 2.170 276.5 9-1 

0.457 21.73 7.434 2.138 406.6 17-2 

0.244 21.82 2.708 2.701 348.6 15-1 

0,581 22.32 8.926 2.073 282.8 10-1 

0.832 22,32 25.53 1.681 398.2 12-2 

0,339 22.41 3.784 2.531 422.8 23-2 

0.232 23,35 2.287 2.965 386.9 22-1 

0.437 23.45 5.612 2,407 433.8 24-2 

0,537 23.46 11.36 2.101 440.7 18-2 

0.318 23.58 4.189 2.623 355.5 16-1 
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Run 
m 

Ib/hr 
q" 

Btu/hr-ft 
4-

f Pr 

67 199.8 5173.6 96.33 141.2 0.589 299.0 97.53 

68 248.4 3499.0 85.41 115.0 0.610 295.3 119.9 

69 299.1 2772.8 75.67 98.79 0.618 285.6 146.1 

70 248.4 2145.1 75.66 93.31 0.682 237.1 146.1 

71 248.4 4289.3 89.74 124.2 0.576 324.1 110.2 

72 199.8 4280.6 82.77 116.8 0.629 224.3 126.3 

73 299.1 1571.8 69.40 81.66 0.683 246.0 167.1 

74 299.1 3498.1 78.92 106.4 0.586 307.8 136.5 

75 299.1 2143.1 70.37 86.63 0.658 251.8 163.6 

76 248.4 5167.3 93.82 134.0 0.539 353.0 102.1 

77 299.1 4296.0 82.62 115.4 0.550 334.6 126.7 

78 199.9 5173.7 86.40 124.7 0.589 242.8 117.6 

79 299.1 5195.8 85.89 124.5 0.517 359.5 118.7 

80 248.4 2772.0 78.30 98.50 0.650 252.0 138.3 

81 248.4 3499.0 79.95 104.9 0.610 261.6 133.7 

82 299.1 2772.8 72.05 91.52 0.618 262.3 157.7 

83 299.1 3498.1 74.36 97.60 0.586 277.0 150.1 

84 248.4 4289.3 83.08 111.8 0.576 280.6 125.5 

85 248.4 5167.3 84.82 113.4 0.539 298.0 118.9 

86 299.1 4296.0 77.05 103.8 0.550 294.9 141.9 

87 299.1 5195.8 79.17 111,2 0,517 309.6 135.8 

88 299,1 6151.2 83.04 119,1 0,478 337,7 125.6 

89 299.1 7185.8 85.63 126.4 0.451 357.5 119.3 

90 299.1 8263.1 89.13 135.1 0.417 385.4 111.5 

Be Nu 
s 

Gij* 

xl^ Nu /Nu 
8 o -.'p Réf. 

0.910 

0.646 

0.539 

0.411 

0.731 

0.755 

0.298 

0.627 

0.393 

0.828 

0.728 

0.830 

0.838 

0.462 

0.564 

0.465 

0.546 

0.637 

0.729 

0.618 

0.729 

0.798 
0.887 
0.976 

24.00 

24.22 

24.27 

24.60 

25.65 

25.72 

25.72 

25.85 

26.48 

26.70 

26.80 

27.72 

27.66 

27.87 

28.59 

28.68 

30.41 

30.49 

31.64 

32.52 

32.9(5 

34.93 
36.19 
37.11 

38.74 

16.27 

8.196 

6.337 

24.19 

17.66 

3.416 

12.06 

4.888 

34.78 

17.60 

25.15 

24.69 

9.286 

12.67 

6.875 

9.707 

17.95 

24.48 

13.56 

18.13 

25.69 
33.76 
45.36 

1.661 

2.000 

2.284 

2.479 

1.948 

2.049 

2.951 

2.233 

2.776 

1.878 

2.135 

2.048 

2.048 

2.574 

2.452 

2.771 

2.715 

2.423 

2.347 

2.695 

2.557 

2.521 
2.462 

2.375 

447.5 

461.2 

452.0 

363.6 

507.6 

307.9 

393.5 

484.8 

393.7 

550.5 

525.0 

331.4 

559.2 

382.7 

387.2 

399.6 

416.3 

412.2 

431.1 

437.5 

450.6 

487.3 
510.3 

543.3 

13-2 

19-2 

25-2 

17-1 

20-2 

12-1 

23.1 

26-2 

24-1 

21-2 

27-2 

13-1 

28.2 

18.1  

19-1 

25-1 

26-1 

20-1 

21-1 

27-1 

28-1 

7-1 
30-1 

31-1 

N> 
ON 
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Experimental Results for Ethylene Glycol, y = 2.45 

Run 
di 

Ib/hr 
q" 2 

rtu/hr-ft 
T 

V 
f Re 

s 
Pr Be Nu s 

% 
xlO Nu /Nu s o Ref. 

1 24.95 184.8 72.30 76.54 8.750 22.00 156.9 0.101 8.779 0.4637 1.747 41.55 8-1 

2 41,21 418.5 76.41 84.11 4.685 40.03 143.8 0.178 11.02 1.281 1.710 71.39 12-2 

3 41,21 418.5 72.45 SO.08 4.685 36.48 156.4 0.182 11.05 0.1564 1.765 62.40 12-1 

4 24.95 184.8 75.19 78.55 8.750 23.56 147.6 0.079 11.13 0.5337 2.169 45.86 8-2 

5 56.50 412.4 72.13 79.32 3.654 49.63 157.5 6.172 11.55 1.026 1.857 87.56 17-1 

6 41.21 721.2 80.95 93.02 4.344 44.41 131.0 0.271 12.18 2.735 1.483 77.80 13-2 

7 56., 50 412.4 74.98 81.63 3.654 53.09 148.2 0.156 12.55 1.179 1.976 96.52 17-2 

8 41.21 721.3 74.14 85.71 4.344 37.97 150.8 0.272 12.60 1.980 1.718 62.05 13-1 

9 56.50 723.9 77.35 88.82 3.425 56.09 141.0 0.264 12.81 2.319 1.706 98.50 18-2 

10 70.36 419.9 70.53 77.03 3.104 59.47 163.0 0.157 12.98 15.74 2.102 106.0 23-2 

11 41.21 1135.5 88.18 105.8 3.896 52.03 113.6 0.378 13.24 5.977 1.450 90.66 14-2 

12 70.36 734.7 73.92 84.80 2.906 64.48 151.6 0.257 13.64 1.996 1.854 112.2 24-2 

13 56.50 723.9 72.36 82.97 3.425 49.89 150.7 0.253 13.74 1.822 1.897 83.17 18-1 

14 82.37 421.1 72.46 78.57 2.798 72.92 156.3 0.145 13,90 1.065 2.216 136.3 29-2 

15 56.50 1141.7 82.97 99.76 3.131 63.69 125.8 0.372 13.91 4.753 1.576 110.7 19-2 

16 70.36 419.9 68.19 74.20 3.104 56.18 171.6 0.147 14.02 0.859 2.309 97.63 23-1 

17 70.36 1148.5 79.84 96.18 2.688 73.93 134.0 0.370 14.31 4.136 1.654 128.8 25-2 

18 82.37 735.9 74.87 85.12 2.666 77.19 148.5 0.240 14.51 2.093 1.959 140.6 30-2 

19 41.21 1608.7 96.79 119.7 3.514 62.23 96.72 0.463 14.62 12.28 1.379 109.7 15-2 

20 82.37 421.1 70.46 76.18 2.798 69.51 163.3 0.138 14.81, 0.965 2.398 127.2 29-1 

21 56.50 1141.7 75.12 90.28 3.131 53.26 147.7 0.354 15.24 3.287 1.825 25.52 19-1 
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& q" 2 T GtL* 
Run Ib/hr Btu/hr-ft o_ o_ f Re Pr Be Nu .a Nu /Nu Re ) Ref. 

FF 8 s xlOT s o op 

22 41.21 1608.7 81.78 103.2 3.514 45.24 128.8 0.479 15.31 6.34 1.596 69,19 15-1 

23 41.21 2178.1 85.27 114.3 3.185 48.87 120.2 0.633 15.40 10.07 1.444 72.58 16-1 

24 95.16 733.5 71.50 80.98 2.309 82.33 159.6 0.227 15.58 1.770 2.157 144.8 36-1 

25 70.36 1635.8 84.82 106.1 2.543 82.60 121.2 0.465 15.79 7.409 1.605 144.6 26-2 

26 110.4 737.8 71.47 80.75 2.055 95.47 159.7 0.223 15.98 1.777 2.210 170.6 43-2 

27 70.36 1148.5 73.49 87.74 2.688 63.82 153.0 0.337 16.26 3.054 1.968 104.1 25-1 

28 82.37 735.9 71.38 80.30 2.666 71.06 160.0 0.214 16.59 1.765 2.298 124.8 30-1 

29 56.50 2182.1 82.19 108.4 2.612 62.58 127.8 0.584 17.02 8.762 1.630 95.61 21-1 

30 82.37 1632.3 83.71 103.2 2.327 94.37 123.9 0.429 17.16 7,029 1.758 169.1 32-2 

31 110.4 737.8 68.85 77.33 2.055 89.61 169.1 0.207 17.45 1.560 2.461 155.6 43-1 

32 70.36 2213.0 91.65 117.7 2.326 95.57 106.3 0.544 17.59 13.56 1.575 168,2 27-2 

33 95.16 1638.1 80.89 99.51 2.124 102.4 131.2 0.419 17.93 6.194 1.872 183,2 38-2 

34 121.0 1162.4 66.80 79.62 1.745 93.34 177.0 0.318 18.12 2.215 2.298 149.6 51-1 

35 56.50 2815.8 86.88 118.5 2.387 69.36 116.5 0.683 18.29 13.99 1.584 104.8 22-1 

36 110.4 1638.1 77.55 95.61 1.833 110.3 140.4 0.415 18.40 5.396 1.967 190.7 45-2 

37 56.50 2815.8 105.9 137.8 2.387 102.0 82.46 0.606 18.67 31.20 1.432 182,8 22-2 

38 82.37 1632.3 76.02 93.76 2.327 79.29 145.0 0.409 18.79 4.206 2.032 131.5 32-1 

39 82,37 2216.4 89.40 113.4 2.155 106.7 111.0 0.510 19.03 12.31 1.728 191.6 33-2 

40 95.16 1638.1 74.19 91.36 2.124 87.77 150.7 0.404 19.27 4.508 2.110 146.6 38-1 

41 121.0 2262.1 78.26 102.0 1.557 122.7 138.4 0.543 19.37 7.550 1.890 203,1 52-2 

42 95.16 2223.1 85.82 109.1 1.993 114.2 118.9 0.507 19.58 10.53 1.821 204.7 39-2 

43 110.4 1638.1 71.76 88.33 1.833 96.15 158.7 0.397 19.91 4.004 2.219 156.7 45-1 
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m q" » T. T 
Run Ib/hr Btu/hr-ft Op f Rê  

44 82.37 2216.4 79.00 101.5 2.155 84.91 

45 70.36 2870.4 98.92 129.8 2.153 113.1 

46 121.0 2906.5 82.90 112.3 1.471 136.0 

47 82.37 2871.9 94.94 124.0 2.007 119.8 

00
 

121.0 1660.0 69.26 85.41 1.651 199.18 

49 110.4 2233.9 82.94 105.1 1.724 124.4 

50 95.16 2223.1 76.76 98.45 1.993 93.19 

51 82.37 2871.9 81.52 109.3 2.007 89.88 

52 199.9 1168.1 68.77 79.81 1.199 101.8 

53 110.4 2875.8 87.07 114.8 1.600 136.1 

54 82.37 3605.3 101.3 134.9 1.865 136.2 

55 121.0 2906.5 73.57 99.86 1.471 110.0 

56 121.0 3665.0 89.12 122.9 1.351 155.9 

57 82.37 3605.3 84.57 117.6 1.865 96.18 

58 199.9 1658.3 70.86 85.71 1.147 170.3 

59 110.4 2233.9 75.09 95.10 1.724 104.0 

60 110.4 3629.5 92.64 125.5 1.506 153.2 

61 110.4 2875.8 76.98 102.2 1.600 108.7 

62 95.1 3601.0 98.41 139.6 1.735 148.4 

63 199.9 2243.3 73.71 92.88 1.093 182.2 

64 121.0 4501.6 94.22 133.2 1.310 173.4 

65 95.16 3601.0 83.88 114.0 1.735 109.4 

66 95.16 4443.9 105.0 142.8 1.366 168.9 

Gr* 
Pr Be Nu Nu /Nu Re ) Réf. s XIO so op 

136.3 0.513 20.02 7.672 1.953 137.7 33-1 

91.46 0.591 20.13 24.95 1.594 203.8 28-2 

126.0 0.651 20.23 12.06 1.786 227.0 53-2 

100.0 0.595 20.52 20.27 1.677 215.7 34-2 

167.6 0.393 20.62 3.584 2.334 156.2 52-1 

125.9 0.490 20.64 9.287 1.955 217.2 46-2 

142.8 0.502 20.78 6.923 2.058 152.7 39-1 

129.5 0.623 21.07 11.18 1.884 142.5 34-1 

169.4 0.270 21.20 2.460 2.645 282.3 57-2 

116.0 0.598 21.33 14.41 1.835 235.5 47-2 

89.19 0.677 21.90 3.324 1.617 247.5 35-2 

152.7 0.622 22.31 7.759 2.105 166.6 53-1 

111.5 0.717 22.39 20.11 1.781 261.5 54-2 

121.8 0.723 22.40 16.15 1.345 149.8 35-1 

161.9 0.358 22.44 3.875 2.510 292.2 58-2 

147.9 0.468 22.58 6.419 2.260 16/. 3 46-1 

104.4 0.682 22.90 23.22 1.784 267.9 

142.1 0.583 23.11 9.050 2.133 170.1 47-1 

93.95 0.642 23.40 29.41 1.761 272.6 41-2 

152.2 0.453 23.63 6.031 2.386 310.2 59-2 

101.4 0.800 24.01 30.82 1.748 297.3 55-2 

123.5 0.663 24.50 15.63 2.029 175.6 41-1 

83.71 0.723 24.80 47.51 1.693 288.6 42-2 
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m 
Run Ib/hr 

q" 2 
Btu/hr-ft 

Tb 

°F 

T 
V 

°F 
f 

67 199.9 1168.1 66.47 75.88 1.199 152.9 

68 199.9 2928.0 76.98 100.87 1.038 196.7 

69 110.4 4468.0 99.60 136.41 1.412 176.4 

70 121.0 4501.6 79.88 115.4 1.310 127.3 

71 199.9 3667.6 80.83 109.5 0.986 214.8 

72 199.9 1658.3 67.60 80.28 1.147 157.3 

73 199.9 2243.3 69.32 85.87 1.093 1154.0 

74 1110.4 4468.0 84.08 117.6 1.412 127.6 

75 199.9 2928.0 71.27 92.10 1.038 171.9 

76 199.9 4510.2 85.45 117.9 0.938 237.9 

77 248.4 2267.5 76.32 92.08 1.009 240.8 

78 248.4 2928.0 79.60 99.64 0.961 259.5 

79 199.9 3667.6 73.69 98.52 0.986 182.2 

80 248.4 1658.3 74.16 85.37 1.059 228.9 

81 199.9 6427.9 94.98 137.6 0.848 290.9 

82 199.9 4510.2 76.70 105.8 0.938 195.5 

83 248.4 4565.9 87.06 115.9 0.713 306.1 

84 248.4 2928.0 75.01 92.46 0.961 233.5 

85 199.9 6427.9 83.60 120.2 0.848 223.4 

86 248.4 6497.0 96.69 134.7 0.774 374.2 

87 248.4 4565.9 79.95 105.2 0.889 261.6 

88 248.4 6497.0 86.65 120.1 0.774 303.4 

89 248.4 8744.6 93.21 135.9 1.049 348.5 

Gr* 

" xw ®*o>p 

178.3 0.234 24.83 2.190 3.152 260.1 57-1 

142.1 0.552 24.86 9.216 2.283 333.4 60-2 

91.97 0.729 25.42 38.34 1.791 314.9 49-2 

133.9 0.803 25.82 16.24 2.071 190.2 55-1 

131.3 0.644 26.11 13.83 2.198 364.8 61-2 

173.9 0.312 26.18 3.293 3.001 260.6 58-1 

167.4 0.403 27.18 4.856 2.837 266.4 59-1 

123.0 0.738 27.28 19.57 2.129 197.2 49-1 

160.4 0.500 28.28 6.984 2.708 274.4 60-1 

119.8 0.708 28.48 21.02 2.197 408.4 62-2 

144.1 0.365 29.17 6.916 2.882 451.0 65-2 

134.7 0.455 29.73 10.42 2,681 484.5 66-2 

152.3 0.587 29.81 9.851 2.641 287.6 61-1 

150.8 0.264 29.88 4.556 3.261 435.8 64-2 

99.96 0.870 31.41 45.45 2.069 510.5 63-2 

142.9 0.672 31.46 14.01 2.580 307.5 62-1 

116.1 0.623 32.47 22.87 2.469 518.5 67-2 

148.1 0.408 33.93 8.383 3.162 415.9 66-1 

126.7 0.835 34.96 26.31 2.501 348.8 63-1 

96.90 0.769 35.61 49.38 2.313 710.4 68-2 

133.7 0.571 36.87 16,53 2.944 461.5 67-1 

117.0 0.723 39.91 31.95 2.769 524.7 68-1 

103.3 0.884 42.45 57.32 2.605 735.7 69-1 
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Experimental Results 

Run 
m 

Ib/hr f 2 Btu/hr-ft °F Re 
s 

I 4.500 158.5 76.13 • 78.36 83.42 

2 9.49 161.6 69.51 71.71 161.3 

3 9.49 161.6 73.24 75.35 169.5 

4 9.49 362.2 73.56 78.26 170.2 

5 9.49 362.0 73.74 78.08 170.6 

6 9.49 362.0 82.09 86.19 189.6 

7 14.65 363.7 69.17 73.27 247.9 

8 14.65 632.1 68.43 75.47 245.5 

9 U.65 632.1 77.88 84.43 277.7 

10 14.65 363.7 74.60 78.27 266.3 

11 18.99 630.6 66.64 72.89 310.6 

12 23.70 634.4 66.37 72.27 386.1 

13 18.99 360.5 71.51 74.61 331.5 

14 23.70 360.2 70.40 73.49 407.7 

15 23.70 633.3 73.02 78.34 422.0 

16 14.65 637.5 83.45 88.59 297.6 

17 23.70 160.6 65.51 66.79 381.6 

18 23.70 1416.8 72.13 82.90 417.1 

19 14.65 1397.7 82.29 92.62 293.4 

20 14.65 1397.7 103.2 113.1 372.8 

21 32.15 1416.8 69.03 79.13 492.9 

Water, y = 5.08 

Gt* 
Pr Be Nu s x l O  Nu /Nu s o Ref, 

6.181 0.029 6.739 0.2675 1.093 33-1 

6.806 0.029 7.026 0.2032 1.184 40-1 

6.443 0.028 7.277 0.2406 1.197 40-2 

6.413 0.061 7.340 0.5471 1.017 52-1 

6.397 0.056 7.925 0.5509 1.097 41-1 

5.689 0.050 8.297 0.7794 1.094 41-2 

6.841 0.055 8.488 0.4499 1.208 51-1 

6.917 0.095 8.604 0.7553 1.096 46-1 

6.031 0.083 9.118 1.148 1.095 46-2 

6.318 0.047 9.407 0.5748 1.294 51-2 

7.106 0.085 9.696 0.6914 1.251 45-1 

7.135 0.081 10.33 0.6866 1.335 37-1 

6.608 0.041 11.08 0.4968 1.557 50-2 

6.717 0.041 11.16 0.4720 1.579 49-2 

6.464 0.070 11.32 0.9337 1.399 44-2 

5.585 0.063 11.62 1.448 1.351 30-2 

7.229 0.018 12.11 0.1665 2.099 36-2 

6.548 0.142 12.54 2.008 1.316 38-1 

5.674 0.127 12.72 3.033 1.261 31-1 

4.352 0.1065 12.88 6.313 1.158 31-2 

6.855 0.136 13.43 1.742 1.438 25-1 
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m q" _ T T 
Run Ib/hr Btu/hr-ft Op Op* Rê  

22 14.65 2452.3 134.6 150.4 505.0 

23 23.70 2491.5 80.31 96.33 463.1 

24 32.15 2505.4 75.33 91.35 589.8 

25 32.15 1416.8 78.68 87.60 615.5 

26 47.63 1416.8 66.33 75.21 775.5 

27 47.63 2508.4 70.28 85.33 81,8.0 

28 32.15 3871.4 82.85 105.4 648.2 

29 32.15 2505.4 92,40 106.8 725.9 

30 47.63 1416.8 72.85 80.86 846.1 

31 23.70 2491.5 103.3 116.7 604.0 

32 47.63 3890,5 75.60 96.77 876.9 

33 32.15 5522.9 92.91 121.5 730.2 

34 47.63 632.9 67.84 71.19 791.6 

35 62.01 2510.0 67.63 80,84 102.8 

36 47.63 3890.6 93.49 113.2 1089 

37 47.63 5554.1 83.02 110.9 962.3 

38 621.01 3894.0 71.88 90.94 1088 

39 74.87 635.6 64.09 67.22 1182 

40 62.01 3894.0 89.63 103.9 1293 

41 621.01 5559.1 77.76 103.3 1173 

42 47.63 9623.4 100.0 142.1 1171 

43 62.01 7530.1 85.07 117.9 1284 

44 74.87 2520.7 73.02 83.80 1333 

45 62.01 5569.0 97.42 120.1 1482 

Pr Be Nu 
s x l O  Nu /Nu 

s o 
Réf. 

3.118 0.139 13.75 2.615 0,9836 32-2 

5.830 0.200 14.65 4.997 1.301 39-1 

6.252 0.206 14.84 4.086 1.355 26-1 

5.963 0.112 15.00 2.660 1.514 25-2 

7.139 0.121 15.33 1.530 1.672 18-1 

6.729 0.200 15.93 3.268 1.500 19-1 

5.630 0.276 16.10 2.589 1.285 27-1 

4.966 0.165 16.18 7.913 1.350 26-2 

6.480 0.105 16.84 2.073 1.759 18-2 

4.344 0.143 17.08 11.31 1.359 39-2 

6.228 0.272 17.43 6.419 1.448 20-1 

4.934 0.327 17.93 17.76 1.263 28-1 

6.978 0.045 18.13 0.735 2.319 17-2 

7.001 0.179 18.22 2.887 1.747 11-1 

4.898 0.225 18.28 12.76 1.383 20-2 

5.618 0.341 18.72 29.58 1.384 21-1 

6.573 0.251 19.47 5.456 1.656 12-1 

7.389 0.043 19.59 0.6138 2.572 1-1 

5.424 0.218 19.97 9.612 1.570 12-2 

6.041 0.323 20.63 10.06 1.570 13-1 

4.520 0.460 21.00 39.26 1.276 23-1 

5.465 0.396 21.46 18.20 1.472 14-1 

6.464 0.141 22.25 3.717 2i058 3-2 

4.664 0.252 22.66 20.88 1.562 13-2 
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A q" 2 \ K 
Run Ib/hr Btu/hr-ft Rê  

46 62.01 9720.2 92.81 129.9 1407 

47 74.87 3914.6 80.87 95.85 1473 

48 32.15 5522.9 130.5 150.5 1069 

49 62.01 12173 100.9 145.4 1540 

50 74.87 5599.0 73.74 94.33 1346 

51 74.87 7513.3 79.15 106.2 1442 

52 62.01 7230.1 111.7 137.2 1723 

53 74.87 5599.0 90.11 109.5 1647 

54 62.01 9729.2 127.1 157.7 2000 

55 74.87 7513.3 101.1 124.8 1864 

56 74.87 9772.5 85.87 116.8 1566 

57 74.87 12237 93.43 180.1 1711 

58 47.87 9772.5 114.5 142.4 2140 

59 47.63 7488.4 125.5 146.1 1514 

60 74.87 12237 129.2 160.6 2461 

Gr* 
Pr Be Nu Nu /Nu Ref. s  X 1 0  s o  

4.940 0.425 24.30 31.14 1.521 15-1 

5.785 0.186 24.60 8.030 1.981 4-2 

3.241 0.179 24.71 53.41 1.509 28-2 

4.469 0.482 25.19 51.11 1.451 16-1 

6.397 0.268 25.85 8.522 2.013 5-1 

5.924 0.340 26.19 14.38 1.856 6-1 

3.948 0.259 26.73 43.94 1.632 14-2 

5.114 0.226 26.88 16.31 1.914 5-2 

3.352 0.280 28.42 86.33 1.558 15-2 

4.459 0.257 29.15 31.80 1.856 6-2 

5.407 0.371 29.58 24.34 1.914 7-1 

4.901 0.419 30.90 40.07 1.838 8-1 

3.828 0.278 31.66 61.78 1.811 7-2 

3.407 0.191 32.52 63.85 1.893 22-2 

3.283 0.283 34.87 114.6 1.809 8-2 
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Experimental Results for Water, y = 2.45 

Run 
m 

Ib/hr 
q" 2 

Btu/hr-ft 
T 
w Re 

s Pr Be 
Gr* 

xlÔ  Nu /Nu 
s o 

Ref. 

I 4.500 260.3 97.86 101.4 108.1 4.639 0.039 6.851 0.9901 0.8968 49-2 

2 9.490 599.4 82.82 88.49 191.3 5.633 0.069 9.919 2.541 1.172 46-1 

3 4.500 391.0 110.0 113.5 123.0 4.021 0.036 10.17 2.175 1.163 50-2 

4 9.490 345.0 80.47 83.63 185.8 6.772 0.039 10.29 0.6965 1.382 45-1 

5 9.49 950.1 87.77 95.62 203.0 5.272 0.093 11.29 2.541 1.181 47-1 

6 18.99 612.1 70.89 75.38 328.8 6.669 0.060 13.02 0.8200 1.643 43-1 

7 23.70 650.5 75.57 79.68 436.2 6.231 0.053 15.03 1.072 1.818 12-2 

8 27.90 654.0 73.45 77.51 499 6 6.424 0.053 15.30 0.9827 1.874 52-2 

9 23.70 1419.1 76.11 84.69 439.2 6.183 0.1100 15.67 2.393 1.605 13-1 

10 14.65 1465.2 86.51 95.22 308.8 5.361 0.1040 15.73 3.739 1.511 10-1 

11 23.70 2478.5 82.88 96.25 478.1 5.628 0.164 17.42 12.14 1.527 14-1 

12 44.14 1367.8 75.11 81.89 807.,5 6.272 0.087 19.15 2,209 1.988 57-2 

13 36.27 1369.5 70.34 77.06 623.3 6.723 0.009 19.46 1.789 2.081 55-1 

14 23.70 3814.7 93.56 111.6 542.3 4.894 0.206 19.59 12.54 1.488 15-1 

15 32.15 2427.0 78.31 89.52 612.6 5.994 0.141 20.46 4.487 1.848 17-1 

16 44.14 1367.8 68.32 74.37 738.4 6.928 0.082 21.66 1.626 2.348 57-1 

17 47.63 1371.8 69.12 75.07 805.3 6.846 0.080 22.04 1.693 2.376 20-1 

18 32.15 3742.7 84.21 100.9 667.1 5.454 0.189 22.70 9.093 1.771 18-1 

19 32.15 3742.7 110.7 124.9 884.9 3.991 0.145 23.93 21.24 1.698 18-2 

20 36.27 2418.5 75.(50 84.80 667.7 6.228 0.118 24.94 3.990 2.290 56-1 
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® q" 2 
Run Ib/hr Btu/hr-ft F 

21 23.70 3814.7 128.8 142.3 776.1 

22 62.01 1364.9 65.94 71.16 1004.0 

23 23.70 2478.5 105.8 114.7 620.0 

24 44,14 2431.6 72.29 81.22 778.4 

25 55.14 1365.4 66.26 71.16 897.0 

26 67.63 2413.9 71.69 79.69 833.4 

27 40.21 5360.4 85.04 103.7 840.6 

28 68.53 2050.4 66.76 73.74 1122.0 

29 74.87 1200.6 63.70 67.50 1176.0 

30 47.63 3777.3 76.23 87.96 884.0 

31 40.21 2417.0 86.56 93.91 847.8 

32 68,53 3290.2 70.31 80.46 1177 

33 40.21 5300.4 115.0 129.9 1156 

34 40.21 7228.9 95.36 115.7 939.0 

35 47.63 5369.6 83.22 98.20 964.7 

36 55.14 3780.1 74.17 84.58 996.7 

37 74.87 3513.1 69.50 79.22 1272 

38 74.87 2221.8 66.46 72.60 1221 

39 40.21 3756.1 99.93 109.7 987.8 

40 62.01 3781.1 72.60 82.14 1098 

41 62.01 2431.6 68.76 75.13 1043 

42 74.87 4933.9 74.00 86.80 1350 

43 74.87 6772.9 79.33 95.54 1445 

Pr Be 

Gr* 

XIO^ 
Nu /Nu 
8 O 

Ref. 

3.297 0.123 25.16 3.533 1.670 15-2 

7.182 0.071 25.25 1.446 2.784 28-1 

4.221 0.094 25.27 12.14 1.983 14-2 

6.533 0.1171 25.94 3.471 2.428 58-1 

7.147 0.067 26.76 1.470 2.945 24-1 

6.591 0.109 27.85 3.354 2.621 21-1 

5.408 0.214 28.14 13.34 2.066 4-1 

7.093 0.095 28.23 2.262 2.842 33-1 

7.434 0.053 30.44 1.137 3.506 36-1 

6.173 0.150 30.50 6.402 2.541 22-1 

5.357 0.088 30.71 6.178 2.655 2-2 

6.726 0.135 30.96 4.292 2.754 34-1 

3.804 0.147 32.65 34.45 2.114 4-2 

4.785 0.229 32.94 25.29 2.169 5-1 

5.602 0.183 33.64 12.09 2.502 23-1 

6.357 6.135 34.53 5.864 2.912 26-1 

6.807 0.130 34.56 4.415 3.049 38-1 

7.126 0.084 34.73 2.414 3.445 37-1 

4.524 0.107 35.41 15.29 2.622 3-2 

6.503 0.125 37.76 3.215 5-. 47 2 30-1 

6.883 0.086 36.53 2.951 3.499 29-1 

6.373 0.166 36.62 7.596 2.923 39-1 

5.909 0.203 39.43 13.06 2.854 40-1 
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